Арифметические операции в позиционных системах счисления. Арифметические операции с числами в позиционных системах счисления Системы счисления вся теория

Арифметические операции в позиционных системах счисления

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.

Сложение. Рассмотрим сложение чисел в двоичной системе счисления. В его основе лежит таблица сложения одноразрядных двоичных чисел:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания.

Сложение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа 110 2 и 11 2:

Проверим правильность вычислений сложением в десятичной системе счисления. Переведем двоичные числа в десятичную систему счисления и затем их сложим:

110 2 = 1 × 2 2 + 1 × 2 1 + 0 × 2 0 = 6 10 ;

11 2 = 1 × 2 1 + 1 × 2 0 = 3 10 ;

6 10 + 3 10 = 9 10 .

Теперь переведем результат двоичного сложения в десятичное число:

1001 2 = 1 × 2 3 + 0 × 2 2 + 0 × 2 1 + 1 × 2 0 = 9 10 .

Сравним результаты - сложение выполнено правильно.

Вычитание. Рассмотрим вычитание двоичных чисел. В его основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой:

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

Деление. Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. В качестве примера произведем деление двоичного числа 110 2 на 11 2:

Для проведения арифметических операций над числами, выраженными в различных системах счисления, необходимо предварительно перевести их в одну и ту же систему.

Задания

1.22. Провести сложение, вычитание, умножение и деление двоичных чисел 1010 2 и 10 2 и проверить правильность выполнения арифметических действий с помощью электронного калькулятора.

1.23. Сложить восьмеричные числа: 5 8 и 4 8 , 17 8 и 41 8 .

1.24. Провести вычитание шестнадцатеричных чисел: F 16 и А 16 , 41 16 и 17 16 .

1.25. Сложить числа: 17 8 и 17 16 , 41 8 и 41 16

Система счисления (СС)-это совокупность приёмов и правил записи чисел с помощью определенного набора символов.
Алфавит СС - набор символов(цифр), используемых для записи числа.
Основание СС (мощность алфавита СС) - количество символов(цифр) алфавита СС.
Все системы счисления делятся на позиционные и непозиционные . Непозиционная система счисления - это система, в которой количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа.
Итак, в непозиционных системах счисления позиция, которую цифра занимает в записи числа, роли не играет. Так, например, римская система счисления непозиционная. В числах XI и IX "вес” обоих цифр одинаков, несмотря на их месторасположение.

Позиционные системы счисления

Позиционная система счисления это система, в которой значение цифры зависит от ее места (позиции) в записи числа. Основание системы счисления количество знаков или символов, используемых для изображения числа в данной системе счисления
Основание системы счисления определяет её название: основание p - p-ая система счисления.
Например, система счисления в основном, применяемая в современной математике, является позиционной десятичной системой, её основание равно десяти. Для записи любых чисел в ней используется десять всем хорошо известных цифр (0,1,2,3,4,5,6,7,8,9).

Итак, мы сказали, что в позиционных системах счислениях имеет значение позиция, которую цифра занимает в записи числа. Так, запись 23 означает, что это число можно составить из 3 единиц и 2 десятков. Если мы поменяем позиции цифр, то получим совсем другое число – 32. Это число содержит 3 десятка и 2 единицы. «Вес» двойки уменьшился в десять раз, а «вес» тройки в десять раз возрос. Развернутая запись числа
Любое число N в позиционной системе счисления с основанием p может быть представлено в виде многочлена от p :
N=a k p k + a k-1 p k-1 +a k-2 p k-2 +...+a 1 p 1 +a 0 p 0 +a -1 p -1 +a -2 p -2 +...,
где N - число, p - основание системы счисления (p>1), a i - цифры числа (коэффициенты при степени p).
Числа в p-ой системе счисления записываются в виде последовательности цифр:
N=a k a k-1 a k-2 ...a 1 a 0 , a -1 a -2...
Запятая в последовательности отделяет целую часть числа от дробной.
3210 -1-2
N=4567,12 10 =4 *10 3 +5 *10 2 +6 *10 1 +7 *10 0 +1 *10 -1 +2 *10 -2

Двоичная система счисления

Для записи чисел используются только две цифры – 0 и 1. Выбор двоичной системы для использования в компьютере объясняется тем, что электронные элементы, из которых строятся ЭВМ, могут находиться только в двух хорошо различимых состояниях. По существу эти элементы представляют собой выключатели. Как известно выключатель либо включен, либо выключен. Третьего не дано. Одно из состояний обозначается цифрой 1, другое – 0. Благодаря таким особенностям двоичная система стала стандартом при построении ЭВМ.
В этой системе счисления любое число может быть представлено в виде:
N=a k 2 k + a k-1 2 k-1 +a k-2 2 k-2 +...+a 1 2 1 +a 0 2 0 +a -1 2 -1 +a -2 2 -2 +....
Например:11001,01 2 =1 *2 4 +1 *2 3 +0 *2 2 +0 *2 1 +1 *2 0 +0 *2 -1 +1 *2 -2 (развернутая запись числа в двоичной системе счисления)

Двоичная арифметика

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным правилам.

Сложение

Рассмотрим сложение чисел в двоичной системе счисления. В основе лежит таблица сложения одноразрядных двоичных чисел:

0+0=0
0+1=1
1+0=1
1+1=10
1+1+1=11

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или больше основания системы счисления. Для двоичной системы счисления эта величина равна двум.
Сложение многоразрядных двоичных чисел происходит в соответствие с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов с старшие.

Вычитание

Рассмотрим вычитание двоичных чисел. В основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначается 1 с чертой.

0-0=_0
0-1=11
1-0=1
1-1=0

Сложение и вычитание одноразрядных двоичных чисел
Сложение и вычитание многоразрядных двоичных чисел (примеры)

Умножение

В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

0*0=0
0*1=0
1*0=0
1*1=1

Умножение многоразрядных двоичных чисел происходит в соответствии с приведенной таблицей умножения по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя.

Деление

Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления.

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же правилам. Для проведения арифметических операций над числами, представленными в различных системах счисления, необходимо предварительно преобразовать их в одну систему счисления и учесть то, что перенос в следующий разряд при операции сложения и заем из старшего разряда при операции вычитания определяется величиной основания системы счисления.

Арифметические операции в двоичной системе счисления основаны на таблицах сложения, вычитания и умножения одноразрядных двоичных чисел.

При сложении двух единиц происходит переполнение разряда и производится перенос единицы в старший разряд, при вычитании 0–1 производится заем из старшего разряда, в таблице «Вычитание» этот заем обозначен 1 с чертой над цифрой (Таблица 3).

Таблица 3

Ниже приведены примеры выполнения арифметических операций над числами, представленными в различных системах счисления:

Арифметические операции над целыми числами, представленными в различных системах счисления, достаточно просто реализуются с помощью программ Калькулятор и MS Excel.

1.3. Представление чисел в компьютере

Числовые данные обрабатываются в компьютере в двоичной системе счисления. Числа хранятся в памяти компьютера в двоичном коде, т. е. в виде последовательности нулей и единиц, и могут быть представлены в формате с фиксированной или плавающей запятой.

Целые числа хранятся в памяти в формате с фиксированной запятой. При таком формате представления чисел для хранения целых неотрицательных чисел отводится регистр памяти, состоящий из восьми ячеек памяти (8 бит). Каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа, а запятая находится справа после младшего разряда и вне разрядной сетки. Например, число 110011012 будет храниться в регистре памяти следующим образом:

Таблица 4

Максимальное значение целого неотрицательного числа, которое может храниться в регистре в формате с фиксированной запятой, можно определить из формулы: 2n – 1, где n – число разрядов числа. Максимальное число при этом будет равно 28 – 1 = 25510 = 111111112и минимальное 010 = 000000002. Таким образом, диапазон изменения целых неотрицательных чисел будет находиться в пределах от 0 до 25510.

В отличие от десятичной системы в двоичной системе счисления при компьютерном представлении двоичного числа отсутствуют символы, обозначающие знак числа: положительный (+) или отрицательный (-), поэтому для представления целых чисел со знаком в двоичной системе используются два формата представления числа: формат значения числа со знаком и формат дополнительного кода. В первом случае для хранения целых чисел со знаком отводится два регистра памяти (16 бит), причем старший разряд (крайний слева) используется под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное, то – 1. Например, число 53610 = 00000010000110002 будет представлено в регистрах памяти в следующем виде:

Таблица 5

а отрицательное число -53610 = 10000010000110002 в виде:

Таблица 6

Максимальное положительное число или минимальное отрицательное в формате значения числа со знаком (с учетом представления одного разряда под знак) равно 2n-1 – 1 = 216-1 – 1 = 215 – 1 = 3276710 = 1111111111111112 и диапазон чисел будет находиться в пределах от -3276710 до 32767.

Наиболее часто для представления целых чисел со знаком в двоичной системе применяется формат дополнительного кода, который позволяет заменить арифметическую операцию вычитания в компьютере операцией сложения, что существенно упрощает структуру микропроцессора и увеличивает его быстродействие.

Для представления целых отрицательных чисел в таком формате используется дополнительный код, который представляет собой дополнение модуля отрицательного числа до нуля. Перевод целого отрицательного числа в дополнительный код осуществляется с помощью следующих операций:

1) модуль числа записать прямым кодом в n (n = 16) двоичных разрядах;

2) получить обратный код числа (инвертировать все разряды числа, т. е. все единицы заменить на нули, а нули – на единицы);

3) к полученному обратному коду прибавить единицу к младшему разряду.

Например, для числа -53610 в таком формате модуль будет равен 00000010000110002, обратный код – 1111110111100111, а дополнительный код – 1111110111101000.

Необходимо помнить, что дополнительный код положительного числа – само число.

Для хранения целых чисел со знаком помимо 16-разрядного компьютерного представления, когда используются два регистра памяти (такой формат числа называется также форматом коротких целых чисел со знаком), применяются форматы средних и длинных целых чисел со знаком. Для представления чисел в формате средних чисел используется четыре регистра (4 х 8 = 32 бит), а для представления чисел в формате длинных чисел – восемь регистров (8 х 8 = 64 бита). Диапазоны значений для формата средних и длинных чисел будут соответственно равны: -(231 – 1) … + 231 – 1 и -(263-1) … + 263 – 1.

Компьютерное представление чисел в формате с фиксированной запятой имеет свои преимущества и недостатки. К преимуществам относятся простота представления чисел и алгоритмов реализации арифметических операций, к недостаткам – конечный диапазон представления чисел, который может быть недостаточным для решения многих задач практического характера (математических, экономических, физических и т. д.).

Вещественные числа (конечные и бесконечные десятичные дроби) обрабатываются и хранятся в компьютере в формате с плавающей запятой. При таком формате представления числа положение запятой в записи может изменяться. Любое вещественное число К в формате с плавающей запятой может быть представлено в виде:

где А – мантисса числа; h – основание системы счисления; p – порядок числа.

Выражение (2.7) для десятичной системы счисления примет вид:

для двоичной -

для восьмеричной -

для шестнадцатеричной -

Такая форма представления числа также называется нормальной . С изменением порядка запятая в числе смещается, т. е. как бы плавает влево или вправо. Поэтому нормальную форму представления чисел называют формой с плавающей запятой . Десятичное число 15,5, например, в формате с плавающей запятой может быть представлено в виде: 0,155 · 102; 1,55 · 101; 15,5 · 100; 155,0 · 10-1; 1550,0 · 10-2 и т. д. Эта форма записи десятичного числа 15,5 с плавающей запятой не используется при написании компьютерных программ и вводе их в компьютер (устройства ввода компьютеров воспринимают только линейную запись данных). Исходя из этого выражение (2.7) для представления десятичных чисел и ввода их в компьютер преобразовывают к виду

где Р – порядок числа,

т. е. вместо основания системы счисления 10 пишут букву Е, вместо запятой – точку, и знак умножения не ставится. Таким образом, число 15,5 в формате с плавающей запятой и линейной записи (компьютерное представление) будет записано в виде: 0.155Е2; 1.55Е1; 15.5Е0; 155.0Е-1; 1550.0Е-2 и т.д.

Независимо от системы счисления любое число в форме с плавающей запятой может быть представлено бесконечным множеством чисел. Такая форма записи называется ненормализованной . Для однозначного представления чисел с плавающей запятой используют нормализованную форму записи числа, при которой мантисса числа должна отвечать условию

где |А| - абсолютное значение мантиссы числа.

Условие (2.9) означает, что мантисса должна быть правильной дробью и иметь после запятой цифру, отличную от нуля, или, другими словами, если после запятой в мантиссе стоит не нуль, то число называется нормализованным. Так, число 15,5 в нормализованном виде (нормализованная мантисса) в форме с плавающей запятой будет выглядеть следующим образом: 0,155 · 102, т. е. нормализованная мантисса будет A = 0,155 и порядок Р = 2, или в компьютерном представлении числа 0.155Е2.

Числа в форме с плавающей запятой имеют фиксированный формат и занимают в памяти компьютера четыре (32 бит) или восемь байт (64 бит). Если число занимает в памяти компьютера 32 разряда, то это число обычной точности, если 64 разряда, то это число двойной точности. При записи числа с плавающей запятой выделяются разряды для хранения знака мантиссы, знака порядка, мантиссы и порядка. Количество разрядов, которое отводится под порядок числа, определяет диапазон изменения чисел, а количество разрядов, отведенных для хранения мантиссы, – точность, с которой задается число.

При выполнении арифметических операций (сложение и вычитание) над числами, представленными в формате с плавающей запятой, реализуется следующий порядок действий (алгоритм) :

1) производится выравнивание порядков чисел, над которыми совершаются арифметические операции (порядок меньшего по модулю числа увеличивается до величины порядка большего по модулю числа, мантисса при этом уменьшается в такое же количество раз);

2) выполняются арифметические операции над мантиссами чисел;

3) производится нормализация полученного результата.

УРОК №19-20.

Тема

Арифметические операции в позиционных системах счисления. Умножение и деление.

Цель урока: показать способы арифметических операций (умножения и деления) чисел в разных системах счисления, проверить усвоение темы «Сложение и вычитание чисел в различных системах счисления».

Задачи урока:

    образовательные : практическое применение изученного материала по теме «Умножение и деление в различных системах счисления», закрепление и проверка знаний по теме «Сложение и вычитание чисел в различных системах счисления». развивающие: развитие навыков индивидуальной практической работы , умения применять знания для решения задач. воспитательные: достижение сознательного усвоения материала учащимися.

Материалы и оборудование к уроку: карточки для самостоятельной работы, таблицы умножения.

Тип урока: комбинированный урок

Форма проведения урока : индивидуальная, фронтальная.

Ход урока:

1. Проверка домашнего задания.

Домашнее задание:

1. № 2.41 (1 и 2 столбик), практикум, стр. 55

Решение:

А) 11102+10012 =101112

Б) 678+238=1128

В)AF16+9716 = 14616

Г)11102-10012 =1012

Д) 678-238 =448

Е) АF16-9716 =1816

2. №2.48 (стр. 56)

2. Самостоятельная работа «Сложение и вычитание чисел в различных системах счисления». (20 минут)

Самостоятельная работа. 10 класс .

11 + 1110 ; 10111+111 ; 110111+101110

3. Вычесть: 10111-111; 11 - 1110

4. Сложить и вычесть в 8-ричной системе: 738 и 258

Вариант 1

Самостоятельная работа. 10 класс. Двоичная система счисления: перевод 2® 10; сложение.

1. Выполнить перевод из двоичной системы счисления в десятичную.

2. Сложить два двоичных числа.

1110+111 ; 111+1001 ; 1101+110001

3. Вычесть: 111-1001; 1110+111

4. Сложить и вычесть в 16-ричной системе: 7316 и 2916

Вариант 2

3. Новый материал.

1. У м н о ж е н и е

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Умножение в двоичной системе

Умножение в восьмеричной системе

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Пример 1. Перемножим числа 5 и 6 в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления.

https://pandia.ru/text/80/244/images/image004_82.gif" width="419" height="86 src=">
Ответ: 5 . 6 = 3010 = 111102 = 368.
Проверка.
111102 = 24 + 23 + 22 + 21 = 30;
368 = 381 + 680 = 30.

Пример 2. Перемножим числа 115 и 51 в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления.

https://pandia.ru/text/80/244/images/image006_67.gif" width="446" height="103 src=">
Ответ: 115 . 51 = 586510 = 10110111010012 = 133518.
Проверка. Преобразуем полученные произведения к десятичному виду:
10110111010012 = 212 + 210 + 29 + 27 + 26 + 25 + 23 + 20 = 5865;
133518 = 1 . 84 + 3 . 83 + 3 . 82 + 5 . 81 + 1 . 80 = 5865.

2. Д е л е н и е

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто , ведь очередная цифра частного может быть только нулем или единицей.
Пример 3. Разделим число 30 на число 6.

https://pandia.ru/text/80/244/images/image008_48.gif" width="478" height="87 src=">
Ответ: 30: 6 = 510 = 1012 = 58.

Пример 4. Разделим число 5865 на число 115.

https://pandia.ru/text/80/244/images/image010_50.gif" width="400" height="159 src=">

Восьмеричная: 133518:1638

https://pandia.ru/text/80/244/images/image012_40.gif" width="416" height="18 src=">

https://pandia.ru/text/80/244/images/image014_36.gif" width="72" height="89 src=">
Ответ: 35: 14 = 2,510 = 10,12 = 2,48.
Проверка. Преобразуем полученные частные к десятичному виду:
10,12 = 21 + 2 -1 = 2,5;
2,48 = 2 . 80 + 4 . 8-1 = 2,5.

4. Домашнее задание:

1. Приготовиться к контрольной работе № 2 «По теме Системы счисления. Перевод чисел. Арифметические операции в системах счисления»

2. Практикум Угринович, №2.46, 2.47, стр. 56.

Литература:

1. Практикум по информатике и информационным технологиям . Учебное пособие для общеобразовательных учреждений / , . – М.: Бином. Лаборатория Знаний, 2002. 400 с.: ил.

2. Угринович и информационные технологии. Учебник для 10-11 классов. – М.:БИНОМ. Лаборатория знаний, 2003.

3. Шауцукова: Учебн. пособие для 10-11 кл. общеобразоват. учреждений. – М.: Просвещение, 2003.9 - с. 97-101, 104-107.

1.5 Арифметические операции в различных системах счисления

1.5.1 Сложение и вычитание

В системе с основанием я для обозначения нуля и первых с-1 натуральных чисел служат цифры 0, 1, 2, ..., с - 1. Для выполнения операции сложения и вычитания составляется таблица сложения однозначных чисел.

Например, таблица сложения в шестеричной системе счисления:

Сложение любых двух чисел, записанных в системе счисления с основанием с, производится так же, как в десятичной системе, по разрядам, начиная с первого разряда, с использованием таблицы сложения данной системы. Складываемые числа подписываются одно за другим так, чтобы цифры одинаковых разрядов стояли по вертикали. Результат сложения пишется под горизонтальной чертой, проведенной ниже слагаемых чисел. Так же как при сложении чисел в десятичной системе, в случае, когда сложение цифр в каком-либо разряде дает число двузначное, в результат пишется
последняя цифра этого числа, а первая цифра прибавляется к результату сложения следующего разряда.

Например,

Можно обосновать указанное правило сложения чисел, используя представление чисел в виде

Разберем один из примеров:

354 7 =3*7 2 +5*7 1 +4*7 0

263 7 =2*7 2 +6*7 1 +3*7 0

(3*7 2 +5*7 1 +4*7 0) + (2*7 2 +6*7 1 +3*7 0) =

=(3+2)*7 2 +(5+6)*7+(3+4)

5*7 2 +1*7 2 +4*7+7

Последовательно выделяем слагаемые по степени основания 7, начиная с низшей, нулевой, степени.

Вычитание производится также по разрядам, начиная с низшего, причем если цифра уменьшаемого меньше цифры вычитаемого, то из следующего разряда уменьшаемого "занимается" единица и из полученного двузначного числа вычитается соответствующая цифра вычитаемого; при вычитании цифр следующего разряда в этом случае нужно мысленно уменьшить цифру уменьшаемого на единицу, если же эта цифра оказалась нулем (и тогда уменьшение ее невозможно), то следует "занять" единицу из следующего разряда и затем произвести уменьшение на единицу. Специальной таблицы для вычитания составлять не нужно, так как таблица сложения дает результаты вычитания.

Например,

1.5.2 Умножение и деление

Для выполнения действий умножения и деления в системе с основанием с составляется таблица умножения однозначных чисел.

Например, таблица умножения в шестеричной системе счисления:

Умножение двух произвольных чисел в системе с основанием с производится так же, как в десятичной системе - "столбиком", то есть множимое умножается на цифру каждого разряда множителя (последовательно) с последующим сложением этих промежуточных результатов.

Например,

При умножении многозначных чисел в промежуточных результатах индекс основания не ставится:

Деление в системах с основанием с производится углом, так же, как в десятичной системе счисления. При этом используется таблица умножения и таблица сложения соответствующей системы. Сложнее дело обстоит, если результат деления не является конечной с-ичной дробью (или целым числом). Тогда при осуществлении операции деления обычно требуется выделить непериодическую часть дроби и ее период. Умение выполнять операцию деления в с-ичной системе счисления полезно при переводе дробных чисел из одной системы счисления в другую.

Например:

1.6 Перевод чисел из одной системы счисления в другую

Существует много различных способов перевода чисел из одной системы счисления в другую.

Способ деления.

Пусть дано число N=a n a n -1 . . . a 1 а 0 р.

Для получения записи числа N в системе с основанием h следует представить его в виде:

N=b m h m +b m -1 h m -1 +... +b 1 h+b 0 (1)

где 1

N=b m b m -1 ... b 1 b o h (2)

Из (1) получаем:

N= (b m h m -1 +...+b)*h +b 0 = N 1 h+b 0 , где 0? b 0 ?h (3)

To есть цифра b 0 является остатком от деления числа N на число h. Неполное частное N l = b m h m -1 + . . . +b 1 представим в виде:

N l = (b m h m -2 + ... + b 2)h + b 1 = N 2 h+b 1 , где 0? b 2 ?h (4)

Таким образом, цифра b i в записи (2) числа N является остатком от деления первого неполного частного N 1 на основание h новой системы счисления. Второе неполное частное N 2 представим в виде:

N 2 = (b m h m - 3 + ... +b 3)h+b 2 , где 0? b 2 ?h (5)

то есть цифра b 2 является остатком от деления второго неполного частного N 2 на основание h новой системы. Так как не полные частные убывают, то этот процесс конечен. И тогда мы получаем N m = b m , где b m

N m -1 = b m h+b m . 1 = N m h+b m . 1

Таким образом, последовательность цифр b m , b m -1 . . ,b 1 ,b 0 в записи числа N в системе счисления с основанием h есть последовательность остатков последовательного деления числа N на основание h, взятая в обратной последовательности.

Рассмотрим пример: Выполнить перевод числа 123 в шестнадцатеричную систему счисления:

Таким образом, число 123 10 =7(11) 16 либо можно записать как 7B 16

Запишем число 34022 7 в пятеричной системе счисления:

Таким образом, получаем, что 34022 7 =233331 5

Перевод с использованием десятичной системы счисления.

Любое число в любой системе счисления представимо в виде:

N = a n p n +...+a 1 p+a 0

Таким образом, имея запись числа в таком виде, мы легко можем перевести его в привычную нам десятичную систему счисления. Например

2209 5 =2*5 3 +2*5 2 +0*5 1 +9*5 0 =309 10

Так же, число, представленное в десятичной системе счисления, мы можем расписать по степеням любого другого основания:

220809 7 =2*7 5 +2*7 4 +0*7 3 +8*7 2 +0*7 1 +9*7 0 =38817 7

Таким способом можно перевести числа из одной системы в другую. Например: переведем число 625 7 в 3-ичную систему счисления.

625 7 =6 * 7 2 +2*7 1 +5*7 0 =6*49+2*7+5=31310

313 10 =1*3 5 +0*3 4 +2*3 3 +1*3 2 +2*3 1 +1*3 0 =1*243+2*27+1*9+2*3+1=102120 3

Ответ: 625т=102120 3

Систематические дроби. Перевод дробей в различные системы счисления.

Известно, что десятичная дробь отличается от целого числа только наличием запятой, отделяющей целую часть от дробной, и такое сходство не случайно.

Можно сказать, что запись дробного числа в виде десятичной дроби представляет собой перенесение общего принципа записи чисел в позиционной десятичной системе счисления на дробные числа.

В самом общем случае смешанное число, содержащее целую и дробную части, представляется в виде суммы степеней десятки и

Десятичные дроби являются частным случаем систематических дробей, которые можно строить аналогичным образом для любой позиционной системы счисления.

Например, дробь 5 -1 + 6 -2 + 3 -3 назвать восьмеричной и записать в виде: 0,563 8 .

Правила арифметических действий над с - ичными дробями (основание системы - q) такие же, как и над десятичными, но при действиях с однозначными числами нужно пользоваться таблицами сложения и умножения для данной системы.

Следует заметить, что не всякая простая дробь может быть записана в виде конечной десятичной дроби. Это явление наблюдается и в других позиционных системах счисления. При этом одно и то же число может в одной системе счисления записываться в виде конечной дроби, а в другой - в виде бесконечной.

Например:

При переводе дробей из одной позиционной системы счисления в другую необходимо иметь в виду возможность получения бесконечных дробей.

Общее правило перевода числа в систему счисления с основанием n:

Для перевода целого числа в систему счисления с основанием n его надо последовательно делить на n (отбрасывая остатки), при переводе дроби, меньшей единицы - последовательно умножить на n (отбрасывая целые). Цифрами числа в n - ичной системе счисления в первом случае будут остатки, записанные в обратном порядке, а во втором - целые части, записанные в порядке их получения. Целые и дробные части в смешанном числе переводятся отдельно.

Пример: 378,8359375 10 перевести в систему счисления с основанием q=8

Итак, 378,8359375 10 =572,654 8

Быстрый перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.

Перевод чисел между системами счисления, основания которых являются степенями числа 2, может производиться более простым алгоритмом.

Для записи двоичных чисел используют две цифры, то есть в каждом разряде числа возможны два варианта записи. Для записи восьмеричных чисел используется восемь цифр, то есть возможны восемь вариантов. А для записи шестнадцатеричных чисел используется 16 цифр, то есть 16 возможных вариантов.

Таким образом, для перевода целого двоичного числа в восьмеричное его нужно разбить на группы по три цифры, справа налево, а затем преобразовать каждую группу в восьмеричную цифру. Если в последней, левой, группе окажется меньше трех цифр, то нужно его дополнить нулями слева.

100 101 000 010 2

111 111 101 000 010 000 100 2

А для перевода целого двоичного числа в шестнадцатеричное, число разбивают на группы по 4 цифры и следуют тому же алгоритму, что и с

восьмеричной системой счисления.

Например:

1001 0000 1100 0111 0001 2

Например:

1111 1001 1101 000 2

Данное правило работает и наоборот, то есть любое целое число можно перевести из восьмеричной в двоичную и из шестнадцатеричной в двоичную.

Например:

Идентификация параметров осциллирующих процессов в живой природе, моделируемых дифференциальными уравнениями

Комплексные числа: их прошлое и настоящее

Логически строгую теорию комплексных чисел построил в XIX в (1835 г) ирландский математик Вильям Роумен Гамильтон. По Гамильтону комплексные числа - это упорядоченные пары z=(x,y) действительных чисел...

Линейные алгебры малых размерностей

Теорема. Следующие условия на алгебру Ли L над кольцом К эквивалентны (с - некоторое натуральное число): 1. Lс {0}, Lс+1={0}; 2. Zc-1(L) L, Zc(L)=L; 3. L обладает конечным центральным рядом длины с и не обладает таким рядом длины с -1; 4...

Математика в средние века

Пользование счетной доской избавляло от необходимости применения таблиц сложения. Поэтому в текстах зафиксированы лишь правила умножения и деления. Пример на умножение: =. Действия производятся, начиная со старших, а не с младших разрядов...

Проектирование уроков математики по теме "Нумерация" с использованием современных средств обучения

Впервые позиционная система счисления возникла в древнем Вавилоне. В Индии система работает в виде позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел позаимствовала арабская нация, у них, в свою очередь...

Решение математических задач средствами Excel

Упражнение №21. Условие: Вычислить:. Решение: 1) В свободные ячейки вводим комплексные числа 2 + 4i,-3-2i,1-2i,-2+4i. 2) Выделим свободную ячейку и воспользуемся функцией "МНИМ.ПРОИЗВЕД". 3) Выделим свободную ячейку и воспользуемся функцией "МНИМ.РАЗН"...

Система счисления - это способ записи (изображения) чисел. Различные системы счисления, которые существовали раньше и которые используются в настоящее время, делятся на две группы: · позиционные, · непозиционные...

Система счисления. Запись действий над числами

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами...

Система счисления. Запись действий над числами

Двоичная система счисления была придумана математиками и философами ещё до появления компьютеров (XVII -- XIX вв.). Некоторые идеи, лежащие в основе двоичной системы, по существу были известны в Древнем Китае...

Система счисления. Запись действий над числами

Наиболее часто встречающиеся системы счисления - это двоичная, шестнадцатеричная и десятичная и восьмеричная...

1.1 История возникновения различных систем счисления Первобытному человеку считать почти не приходилось. "Один", "два" и "много" - вот все его числа. Но нам - современным людям - приходится иметь дело с числами буквально на каждом шагу...

Системы счисления и основы двоичных кодировок

Система счисления (Нумерация) - это способ представления числа символами некоторого алфавита, которые называются цифрами. Путем длительного развития человечество пришло к двум видам систем счисления: позиционной и не позиционной...

Системы счисления и основы двоичных кодировок

В самой древней нумерации употреблялся лишь знак "|" для единицы, и каждое натуральное число записывалось повторением символа единицы столько раз, сколько единиц содержится в этом числе...

Системы счисления и основы двоичных кодировок

Кроме десятичной системы счисления возможны позиционные системы счисления с любым другим натуральным основанием. В разные исторические периоды многие народы широко использовали различные системы счисления...

Урок зачет как одна из форм контроля учебных достижений семиклассников по алгебре

Существуют различные системы контроля: устный и письменный опрос, математический диктант, итоговые контрольные работы, тесты, зачеты, экзамены, повседневные наблюдения за учебной работой учащихся, проверка домашней работы...

 
Статьи по теме:
Как разблокировать телефон
Как разблокировать от оператора ваш Мегафон Login 2 1. Вставляете сим-карту другого сотового оператора в телефон. 2. Включаете Мегафон Login 2 (Megafon Login 2 MS3A) . 3. Должно появится окно для ввода кода разблокировки . 4. Вводите код: 67587048 5. Теп
Asus ZenFone Max ZC550KL — Советы, рекомендации, часто задаваемые вопросы и полезные параметры
Как вставить SIM-карту на свой Asus ZenFone Max? Asus ZenFone Max — это смартфон с двумя SIM-картами и поддерживает соединение 2G / 3G / 4G. SIM-карта, поддерживаемая устройством, является Micro SIM-картой и может быть видна после снятия задней крышки тел
Что такое расширение файла CDR?
CDR-формат — это файл, который был создан в программе Corel DRAW, содержащей растровое или векторное изображение. Компания Corel использует этот формат в собственных продуктах, поэтому его можно открыть также другим программным обеспечением данной компани
Multisim 17 где находится библиотека элементов
Компоненты и библиотеки элементов Multisim 11 Контрольно-измерительные и индикаторные приборы В Multisim имеются измерительные приборы, каждый из которых можно использовать в схеме только один раз. Эти приборы рас­положены в библиотеке контрольно-из