Решение интегралов заменой. Эта формула носит название формулы замены переменной в определенном интеграле

Замена многочлена или. Здесь - многочлена степени, например, выражение - многочлен степени.

Допустим, у нас есть пример:

Применим метод замены переменной. Как ты думаешь, что нужно принять за? Правильно, .

Уравнение приобретает вид:

Производим обратную замену переменных:

Решим первое уравнение:

Решим второе уравнение:

… Что это означает? Правильно! Что решений не существует.

Таким образом, мы получили два ответа - ; .

Понял как применять метод замены переменной при многочлене? Потренируйся сделать подобное самостоятельно:

Решил? Теперь проверим с тобой основные моменты.

За нужно взять.

Мы получаем выражение:

Решая квадратное уравнение, мы получаем, что имеет два корня: и.

Решением первого квадратного уравнения являются числа и

Решением второго квадратного уравнения - числа и.

Ответ : ; ; ;

Подведем итоги

Метод замены переменной имеет основных типа замен переменных в уравнениях и неравенствах:

1. Степенная замена, когда за мы принимаем какое-то неизвестное, возведенное в степень.

2. Замена многочлена, когда за мы принимаем целое выражение, содержащее неизвестное.

3. Дробно-рациональная замена, когда за мы принимаем какое-либо отношение, содержащее неизвестную переменную.

Важные советы при введении новой переменной:

1. Замену переменных нужно делать сразу, при первой же возможности.

2. Уравнение относительно новой переменно нужно решать до конца и лишь затем возвращаться к старому неизвестному.

3. При возврате к изначальному неизвестному (да и вообще на протяжении всего решения), не забывай проверять корни на ОДЗ.

Новая переменная вводится аналогичным образом, как в уравнениях, так и в неравенствах.

Разберем 3 задачи

Ответы на 3 задачи

1. Пусть, тогда выражение приобретает вид.

Так как, то может быть как положительным, так и отрицательным.

Ответ:

2. Пусть, тогда выражение приобретает вид.

решения нет, так как.

Ответ:

3. Группировкой получаем:

Пусть, тогда выражение приобретает вид
.

Ответ:

ЗАМЕНА ПЕРЕМЕННЫХ. СРЕДНИЙ УРОВЕНЬ.

Замена переменных - это введение нового неизвестного, относительно которого уравнение или неравенство имеет более простой вид.

Перечислю основные типы замен.

Степенная замена

Степенная замена.

Например, с помощью замены биквадратное уравнение приводится к квадратному: .

В неравенствах все аналогично.

Например, в неравенстве сделаем замену, и получим квадратное неравенство: .

Пример (реши самостоятельно):

Решение:

Это дробно-рациональное уравнение (повтори ), но решать его обычным методом (приведение к общему знаменателю) неудобно, так как мы получим уравнение степени, поэтому применяется замена переменных.

Все станет намного проще после замены: . Тогда:

Теперь делаем обратную замену:

Ответ: ; .

Замена многочлена

Замена многочлена или.

Здесь − многочлен степени, т.е. выражение вида

(например, выражение - многочлен степени, то есть).

Чаще всего используется замена квадратного трехчлена: или.

Пример:

Решите уравнение.

Решение:

И опять используется замена переменных.

Тогда уравнение примет вид:

Корни этого квадратного уравнения: и.

Имеем два случая. Сделаем обратную замену для каждого из них:

Значит, это уравнение корней не имеет.

Корни этого уравнения: и.

Ответ. .

Дробно-рациональная замена

Дробно-рациональная замена.

и − многочлены степеней и соответственно.

Например, при решении возвратных уравнений, то есть уравнений вида

обычно используется замена.

Сейчас покажу, как это работает.

Легко проверить, что не является корнем этого уравнения: ведь если подставить в уравнение, получим, что противоречит условию.

Разделим уравнение на:

Перегруппируем:

Теперь делаем замену: .

Прелесть ее в том, что при возведении в квадрат в удвоенном произведении слагаемых сокращается x:

Отсюда следует, что.

Вернемся к нашему уравнению:

Теперь достаточно решить квадратное уравнение и сделать обратную замену.

Пример:

Решите уравнение: .

Решение:

При равенство не выполняется, поэтому. Разделим уравнение на:

Уравнение примет вид:

Его корни:

Произведем обратную замену:

Решим полученные уравнения:

Ответ: ; .

Еще пример:

Решите неравенство.

Решение:

Непосредственной подстановкой убеждаемся, что не входит в решение этого неравенства. Разделим числитель и знаменатель каждой из дробей на:

Теперь очевидна замена переменной: .

Тогда неравенство примет вид:

Используем метод интервалов для нахождения y:

при всех, так как

при всех, так как

Значит, неравенство равносильно следующему:

при всех, так как.

Значит, неравенство равносильно следующему: .

Итак, неравенство оказывается равносильно совокупности:

Ответ: .

Замена переменных - один из важнейших методов решения уравнений и неравенств.

Напоследок дам тебе пару важных советов :

ЗАМЕНА ПЕРЕМЕННЫХ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ.

Замена переменных - метод решения сложных уравнений и неравенств, который позволяет упростить исходное выражение и привести его к стандартному виду.

Виды замены переменной:

  1. Степенная замена: за принимается какое-то неизвестное, возведенное в степень - .
  2. Дробно-рациональная замена: за принимается какое-либо отношение, содержащее неизвестную переменную - , где и - многочлены степеней n и m, соответственно.
  3. Замена многочлена: за принимается целое выражение, содержащее неизвестное - или, где - многочлен степени.

После решения упрощенного уравнения/неравенства, необходимо произвести обратную замену.

Интегрирование заменой переменной (метод подстановки) — один из самых часто встречающихся методов нахождения интегралов.

Цель введения новой переменной — упростить интегрирование. Лучший вариант — заменив переменную, получить относительно новой переменной табличный интеграл. Как определить, какую замену нужно сделать? Навыки приходят с опытом. Чем больше примеров решено, тем быстрее решаются следующие. На начальном этапе используем следующие рассуждения:

То есть. если под знаком интеграла мы видим произведение некоторой функции f(x) и ее производной f ‘(x), то то эту функцию f(x) нужно взять в качестве новой переменной t, поскольку дифференциал dt=f ‘(x)dx уже есть.

Рассмотрим, как работает метод замены переменной, на конкретных примерах.

Вычислить интегралы методом замены переменой:

Здесь 1/(1+x²) — производная от функции arctg x. Поэтому в качестве новой переменной t возьмем arctg x. Далее — воспользуемся :

После того, как нашли интеграл от t, выполняем обратную замену:

Если взять за t синус, то должна быть и его производная, косинус (с точностью до знака). Но косинуса в подынтегральном выражении нет. А вот если в качестве t взять экспоненту, все получается:

Чтобы получить нужный дифференциал dt, изменим знак в числителе и перед интегралом:

(Здесь (ln(cosx))’ — .)

Вычислить заданный интеграл непосредственным интегрированием

удаётся не всегда. Одним из наиболее эффективных приёмов

является метод подстановки или замены переменной интегрирования.

Сущность этого метода заключается в том, что путём введения новой переменной интегрирования удаётся свести заданный интеграл к

новому интегралу, который берётся непосредственным интегрированием.

Рассмотрим этот метод:

Пусть - непрерывная функция

необходимо найти: (1)

Сделаем замену переменной интегрирования:

где φ (t) – монотонная функция, которая имеет непрерывную производную

и существует сложная функция f (φ (t)).

Применив к F (х) = F(φ (t)) формулу дифференцирования сложной

функции, получим:

﴾F (φ (t))﴿′ = F′(x) ∙ φ′ (t)

Но F′(x) = f (x) = f (φ (t)), поэтому

﴾F (φ (t))﴿′ = f (φ (t)) ∙ φ′ (t) (3)

Таким образом, функция F(φ (t)) является первообразной для функции

f (φ (t)) ∙ φ′ (t), поэтому:

∫ f (φ (t)) ∙ φ′ (t) dt = F (φ (t)) + C (4)

Учитывая, что F (φ (t)﴿ = F (x), из (1) и (4) следует формула замены

переменной в неопределённом интеграле:

∫ f (x)dx = ∫ f(φ (t)) φ′ (t)dt (5)

Формально формула (5) получается заменой х на φ (t) и dх на φ′ (t)dt

В полученном после интегрирования по формуле (5) результате следует

перейти снова к переменной х. Это всегда возможно, так как по предпо-

ложению функция х = φ (t) монотонна.

Удачный выбор подстановки обычно представляет известные труд-

ности. Для их преодоления необходимо овладеть техникой дифферен-

цирования и хорошо знать табличные интегралы.

Но все же можно установить ряд общих правил и некоторых приемов

интегрирования.

Правила интегрирования способом подстановки:

1. Определяют, к какому табличному интегралу приводится данный интеграл (предварительно преобразовав подинтегральное выражение, если нужно).

2. Определяют, какую часть подинтегральной функции нужно заменить

новой переменной, и записывают эту замену.

3. Находят дифференциалы обеих частей записи и выражают дифферен-

циал старой переменной (или выражение, содержащее этот диффе-

ренциал) через дифференциал новой переменной.

4. Производят замену под интегралом.

5. Находят полученный интеграл.



6. В результате переходят к старой переменной.

Примеры решения интегралов способом подстановки:

1. Найти: ∫ х²(3+2х ) dx

Решение:

сделаем подстановку 3+2х = t

Найдём дифференциал обеих частей подстановки:

6x dx = dt, откуда

Следовательно:

∫ x (3+2x ) dx = ∫ t ∙ dt = ∫ t dt = ∙ + C = t + C

Заменив t на его выражение из подстановки, получим:

∫ x (3+2x ) dx = (3+2x ) + С


Решение:

= = ∫ е = е + C = е + C

Решение:

Решение:

Решение:

Понятие определённого интеграла.

Разность значений для любой первообразной функции при изменении аргумента от до называется определенный интегралом этой функции в пределах от а до b и обозначается:

а и b называются нижним и верхним пределами интегрирования.

Чтобы вычислить определенный интеграл нужно:

1. Найти соответствующий неопределенный интеграл

2. Подставить в полученное выражение вместо х сначала верхний предел интегрирования в, а затем нижний – а.

3. Из первого результата подстановки вычесть второй.

Коротко это правило записывается в виде формул так:

Эта формула называется формулой Ньютона - Лейбница.

Основные свойства определенного интеграла:

1. , где K=const

3. Если , то

4. Если функция неотрицательна на отрезке , где , то

При замене в определенном интеграле старой переменной интегрирования на новую необходимо старые пределы интегрирования заменить новыми. Эти новые пределы определяются выбранной подстановкой.

Применение определённого интеграла.

Площадь криволинейной трапеции ограниченной кривой , осью абсцисс и двумя прямыми и вычисляется по формуле:

Объем тела, образованного вращением вокруг оси абсцисс криволинейной трапеции, ограниченной кривой , не меняющей свой знак на , осью абсцисс и двумя прямыми и вычисляется по формуле:

С помощью определенного интеграла можно решать и ряд физических задач.

Например:

Если скорость прямолинейно движущегося тела является известной функцией времени t, то путь S, пройденный этим телом с момента времени t = t 1 до момента времени t = t 2 определяется формулой:

Если переменная сила является известной функцией пути S (при этом предполагается, что направление силы не меняется) то работа А, совершаемая этой силой на пути от до определяется формулой:

Примеры:

1. Вычислить площадь фигуры, ограниченной линиями:

y = ; y = (x-2) 2 ; 0x.

Решение:

а) Построим графики функций: y = ; y = (x-2) 2

б) Определим фигуру, площадь которой нужно вычислить.

в) Определим пределы интегрирования, решая уравнение: = (x-2) 2 ; x = 1 ;

г) Вычисляем площадь заданной фигуры:

S = dx + 2 dx = 1 ед 2


2. Вычислить площадь фигуры, ограниченной линиями:

Y = x 2 ; x = y 2 .

Решение:

x 2 = ; x 4 = x ;

x (x 3 – 1) = 0

x 1 = 0 ; x 2 = 1

S = - x 2) dx = ( x 3\2 - ) │ 0 1 = ед 2

3. Вычислить объём тела, полученного вращением вокруг оси 0x фигуры, ограниченной линиями: y = ; x = 1 .

Решение:

V = π dx = π ) 2 dx = π = π │ = π/2 ед. 3


Домашняя контрольная работа по математике
Варианты заданий.

Вариант №1

y = (x + 1) 2 ; y = 1 – x ; 0x


Вариант № 2

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = 6 – x ; y = x 2 + 4


Вариант №3.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = - x 2 + 5 ; y = x + 3


Вариант №4.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = x 2 ; x = 3 ; Ox


Вариант №5.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = 3 + 2x – x 2 ; Ox


Вариант №6.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = x + 6 ; y = 8 + 2x – x 2


Вариант № 7

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить объём тела, образованного вращением вокруг Ox фигуры ограниченной линиями:

y = sin x ; y = 0 ; x = 0 ; x = π


Вариант №8.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

Список литературы

1. Письменный Д.Т. Конспект лекций по высшей математике Части 1, 2. М. АЙРИС ПРЕСС, 2006г.

2. Григорьев В.П., Дубинский Ю.А. Элементы высшей математики. М. Академия, 2008г.

3. Выгодский М.Я. Справочник по высшей математике. М. Наука,2001г.

4. Шипачев В.С. Высшая математика. М. Высшая школа,2005г.

5. Шипачев В.С. Задачник по высшей математике. М. Высшая школа,2005г.

Переходим к рассмотрению общего случая – метода замены переменных в неопределенном интеграле.

Пример 5

В качестве примера возьмём интеграл, который мы рассматривали в самом начале урока. Как мы уже говорили, для решения интеграла нам приглянулась табличная формула ,

и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой.

В данном случае напрашивается:

Вторая по популярности буква для замены – это буква z . В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.

Но при замене у нас остаётся dx ! Наверное, многие догадались, что если осуществляется переход к новой переменной t , то в новом интеграле всё должно быть выражено через букву t , и дифференциалу dx там совсем не место. Следует логичный вывод, что dx нужно превратить в некоторое выражение, которое зависит только от t .

Действие следующее. После того, как мы подобрали замену, в данном примере - это , нам нужно найти дифференциал dt .

Теперь по правилам пропорции выражаем dx :

.

Таким образом:

.

А это уже самый что ни на есть табличный интеграл

(таблица, интегралов, естественно, справедлива и для переменной t ).

В заключении осталось провести обратную замену. Вспоминаем, что .

Чистовое оформление рассмотренного примера должно выглядеть примерно так:

Проведем замену: , тогда

.

.

Значок не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.

При оформлении примера в тетради надстрочную пометку обратной замены лучше выполнять простым карандашом.

Внимание! В следующих примерах нахождение дифференциала новой переменной расписываться подробно не будет.



Вспомнить первый способ решения:

В чем разница? Принципиальной разницы нет. Это фактически одно и то же.

Но, с точки зрения оформления задания, метод подведения функции под знак дифференциала гораздо короче.

Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.

Пример 6

Найти неопределенный интеграл.

.

Проведем замену:

;

.

Как видите, в результате замены исходный интеграл значительно упростился – свёлся к обычной степенной функции. Это и есть цель замены – упростить интеграл .

Ленивые продвинутые люди запросто решат данный интеграл методом подведения функции под знак дифференциала:

Другое дело, что такое решение очевидно далеко не для всех студентов. Кроме того, уже в этом примере использование метода подведения функции под знак дифференциала значительно повышает риск запутаться в решении .

Пример 7

Найти неопределенный интеграл

Выполнить проверку.

Пример 8

Найти неопределенный интеграл.

.

Решение: Производим замену: .

.

Осталось выяснить, во что превратится xdx ? Время от времени в ходе решения интегралов встречается следующий трюк: x мы выразим из той же замены :

.

Пример 9

Найти неопределенный интеграл.

Это пример для самостоятельного решения. Ответ в конце урока.

Пример 10

Найти неопределенный интеграл .

Наверняка некоторые обратили внимание, что в справочной таблице нет правила замены переменной. Сделано это сознательно. Правило внесло бы путаницу в объяснение и понимание, поскольку в вышерассмотренных примерах оно не фигурирует в явном виде.

Настало время рассказать об основной предпосылке использования метода замены переменной: в подынтегральном выражении должна находиться некоторая функцияи её производная . Например, как: .

Ф ункции , могут быть и не в произведении, а в ином сочетании.

В этой связи при нахождении интегралов довольно часто приходится заглядывать в таблицу производных.

В рассматриваемом Примере 10 замечаем, что степень числителя на единицу меньше степени знаменателя. В таблице производных находим формулу , которая как раз понижает степень на единицу. А, значит, если обозначить за t знаменатель, то велики шансы, что и числитель xdx превратится во что-нибудь хорошее:

Замена: .

Кстати, здесь не так сложно подвести функцию под знак дифференциала:

Следует отметить, что для дробей вроде , такой фокус уже не пройдет (точнее говоря, применить нужно будет не только прием замены).

Интегрировать некоторые дроби можно научиться на уроке Интегрирование сложных дробей . Вот еще пара типовых примеров для самостоятельного решения на тот же метод.

Пример 11

Найти неопределенный интеграл

Пример 12

Найти неопределенный интеграл

Решения в конце урока.

Пример 13

Найти неопределенный интеграл

.

Смотрим в таблицу производных и находим наш арккосинус: , поскольку у нас в подынтегральном выражении находится арккосинус и нечто, похожее на его производную.

Общее правило:

За t обозначаем саму функцию (а не её производную).

В данном случае: . Осталось выяснить, во что превратится оставшаяся часть подынтегрального выражения

В этом примере нахождение dt распишем подробно, поскольку – сложная функция:

Или, короче:

.

По правилу пропорции выражаем нужный нам остаток: .

Таким образом:

Пример 14

Найти неопределенный интеграл.

.

Пример для самостоятельного решения. Ответ совсем близко.

Внимательные читатели заметили, что мы рассмотрели мало примеров с тригонометрическими функциями. И это не случайно, поскольку под интегралы от тригонометрических функций отведёны отдельные уроки 7.1.5, 7.1.6, 7.1.7. Более того, далее даны некоторые полезные ориентиры для замены переменной, что особенно актуально для чайников, которым не всегда и не сразу понятно, какую именно замену нужно проводить в том или ином интеграле. Также некоторые типы замен можно посмотреть в статье 7.2.

Более опытные студенты могут ознакомиться с типовой заменой в интегралах с иррациональными функциями

Пример 12: Решение:

Проведем замену:

Пример 14: Решение:

Проведем замену:


Замена переменной в неопределенном интеграле используется при нахождении интегралов, в которых одна из функций является производной другой функции. Пусть есть интеграл $ \int f(x) dx $, сделаем замену $ x=\phi(t) $. Отметим, что функция $ \phi(t) $ является дифференцируемой, поэтому можно найти $ dx = \phi"(t) dt $.

Теперь подставляем $ \begin{vmatrix} x = \phi(t) \\ dx = \phi"(t) dt \end{vmatrix} $ в интеграл и получаем, что:

$$ \int f(x) dx = \int f(\phi(t)) \cdot \phi"(t) dt $$

Эта и есть формула замены переменной в неопределенном интеграле .

Алгоритм метода замены переменной

Таким образом, если в задаче задан интеграл вида: $$ \int f(\phi(x)) \cdot \phi"(x) dx $$ Целесообразно выполнить замену переменной на новую: $$ t = \phi(x) $$ $$ dt = \phi"(t) dt $$

После этого интеграл будет представлен в виде, который легко взять основными методами интегрирования: $$ \int f(\phi(x)) \cdot \phi"(x) dx = \int f(t)dt $$

Не нужно забывать также вернуть замененную переменную назад к $ x $.

Примеры решений

Пример 1

Найти неопределенный интеграл методом замены переменной: $$ \int e^{3x} dx $$

Решение

Выполняем замену переменной в интеграле на $ t = 3x, dt = 3dx $:

$$ \int e^{3x} dx = \int e^t \frac{dt}{3} = \frac{1}{3} \int e^t dt = $$

Интеграл экспоненты всё такой же по таблице интегрирования, хоть вместо $ x $ написано $ t $:

$$ = \frac{1}{3} e^t + C = \frac{1}{3} e^{3x} + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int e^{3x} dx = \frac{1}{3} e^{3x} + C $$
 
Статьи по теме:
Multisim 17 где находится библиотека элементов
Компоненты и библиотеки элементов Multisim 11 Контрольно-измерительные и индикаторные приборы В Multisim имеются измерительные приборы, каждый из которых можно использовать в схеме только один раз. Эти приборы рас­положены в библиотеке контрольно-из
Универсальная последовательная шина USB В чем преимущества шины usb
Универсальная последовательная шина Mini-B Connector ECN : извещение выпущено в октябре 2000 года. Errata, начиная с декабря 2000 : извещение выпущено в декабре 2000 года. Pull-up/Pull-down Resistors ECN Errata, начиная с мая 2002 : извещение выпущено в
Календарь: как использовать онлайн-сервис для планирования личного времени
Данное средство Outlook поможет вам спланировать наилучшим образом свои дела (встречи, собрания, события) в течение дня, недели или месяца. С помощью календаря Outlook можно планировать следующее. Встреча . Для этого требуется выделить время в деловом рас
HDD vs SSD в играх: сравнение времени загрузки и производительности
Привет всем Я постараюсь простыми словами рассказать вам что лучше использовать для игр: жесткий диск или SSD. Но это все мои личные мысли я не претендую на истину, ну это так… Я немного разбираюсь в SSD и в HDD, вообще люблю железо.. Все мы знаем что SS