Сети WiFi. Стандарты и технологии

Разработкой стандартов WiFi 802.11 занимается организация IEEE (Institute of Electrical and Electronic Engineers)

IEEE 802.11 - базовый стандарт для сетей Wi-Fi, который определяет набор протоколов для самых низких скоростей передачи данных (transfer).


IEEE 802.11 b
- описывает бо льшие скорости передачи и вводит больше технологических ограничений. Этот стандарт широко продвигался со стороны WECA ( Wireless Ethernet Compatibility Alliance) и изначально назывался Wi- Fi.
Используются частотные каналы в спектре 2.4GHz ()
.
Ратифицирован в 1999 году.
Используемая радиочастотная технология: DSSS.
Кодирование: Barker 11 и CCK.
Модуляции: DBPSK и DQPSK,
Максимальные скорости передачи данных (transfer) в канале: 1, 2, 5.5, 11 Mbps,

IEEE 802.11 a - описывает значительно более высокие скорости передачи (transfer) чем 802.11b.
Используются частотные каналы в частотном спектре 5GHz. Протокол
Не совместим с 802.11 b .
Ратифицирован в 1999 году.
Используемая радиочастотная технология: OFDM.
Кодирование: Convoltion Coding.
Модуляции: BPSK, QPSK, 16-QAM, 64-QAM.
Максимальные скорости передачи данных в канале: 6, 9, 12, 18, 24, 36, 48, 54 Mbps.

IEEE 802.11 g
- описывает скорости передачи данных эквивалентные 802.11а.
Используются частотные каналы в спектре 2.4GHz. Протокол совместим с 802.11b.
Ратифицирован в 2003 году.
Используемые радиочастотные технологии: DSSS и OFDM.
Кодирование: Barker 11 и CCK.
Модуляции: DBPSK и DQPSK,
Максимальные скорости передачи данных (transfer) в канале:
- 1, 2, 5.5, 11 Mbps на DSSS и
- 6, 9, 12, 18, 24, 36, 48, 54 Mbps на OFDM.

IEEE 802.11n - самый передовой коммерческий WiFi-стандарт, на данный момент, официально разрешенный к ввозу и применению на территории РФ (802.11ac пока в процессе проработки регулятором). В 802.11n используются частотные каналы в частотных спектрах WiFi 2.4GHz и 5GHz. Совместим с 11b/11 a /11 g . Хотя рекомендуется строить сети с ориентацией только на 802.11n, т.к. требуется конфигурирование специальных защитных режимов при необходимости обратной совместимости с устаревшими стандартами. Это ведет к большому приросту сигнальной информации и существенному снижению доступной полезной производительности радиоинтерфейса. Собственно даже один клиент WiFi 802.11g или 802.11b потребует специальной настройки всей сети и мгновенной ее существенной деградации в части агрегированной производительности.
Сам стандарт WiFi 802.11n вышел 11 сентября 2009 года.
Поддерживаются частотные каналы WiFi шириной 20MHz и 40MHz (2x20MHz).
Используемая радиочастотная технология: OFDM.
Используется технология OFDM MIMO (Multiple Input Multiple Output) вплоть до уровня 4х4 (4хПередатчика и 4хПриемника). При этом минимум 2хПередатчика на Точку Доступа и 1хПередатчик на пользовательское устройство.
Примеры возможных MCS (Modulation & Coding Scheme) для 802.11n, а также максимальные теоретические скорости передачи данных (transfer) в радиоканале представлены в следующей таблице:

Здесь SGI это защитные интервалы между фреймами.
Spatial Streams это количество пространственных потоков.
Type это тип модуляции.
Data Rate это максимальная теоретическая скорость передачи данных в радиоканале в Mбит/сек.


Важно подчеркнуть , что указанные скорости соответствуют понятию channel rate и являются предельным значением с использованием данного набора технологий в рамках описываемого стандарта(собственно эти значения, как Вы вероятно заметили, производители пишут и на коробках домашних WiFi-устройств в магазинах). Но в реальной жизни эти значения не достижимы в силу специфики самой технологии стандарта WiFi 802.11. Например здесь сильно влияет "политкорректность" в части обеспечения CSMA/CA (устройства WiFi постонно слушают эфир и не могут передавать, если среда передачи занята), необходимость подтверждения каждого юникастового фрейма, полудуплексная природа всех стандартов WiFi и только 802.11ac/Wave-2 сможет это начать обходить с и т.д.. Поэтому практическая эффективность устаревших стандартов 802.11 b/g/a никогда не превышает 50% в идеальных условиях(например для 802.11g максимальная скорость на абонента обычно не выше 22Мб/с), а для 802.11n эффективность может быть до 60%. Если же сеть работает в защищенном режиме, что часто и просходит из-за смешанного присутствия различных WiFi-чипов на различных устройствах в сети, то даже указанная относительная эффективность может упасть в 2-3 раза. Это касается, например, микса из Wi-Fi устройств с чипами 802.11b, 802.11g в сети с точками доступа WiFi 802.11g или устройства WiFi 802.11g/802.11b в сети с точками доступа WiFi 802.11n и т.п.. Подробнее о .


Помимо основных стандартов WiFi 802.11a, b, g, n, существуют и используются дополнительные стандарты для реализации различных сервисных функций:

. 802.11d . Для адаптации различных устройств стандарта WiFi к специфическим условиям страны. Внутри регуляторного поля каждого государства диапазоны часто различаются и могут быть отличны даже в в зависимости от географического положения. Стандарт WiFi IEEE 802.11d позволяет регулировать полосы частот в устройствах разных производителей с помощью специальных опций, введенных в протоколы управления доступом к среде передачи.

. 802.11e . Описывает классы качества QoS для передачи различных медиафайлов и, в целом различного медиаконтента. Адаптация МАС-уровня для 802.11e, определяет качество, например, одновременной передачи звука и изображения.

. 802.11f . Направлен на унификацию параметров Точек Доступа стандарта Wi-Fi различных производителей. Стандарт позволяет пользователю работать с разными сетями при перемещении между зонами действия отдельных сетей.

. 802.11h . Используется для предотвращения создания проблем метеорологическим и военным радарам путем динамического снижения излучаемой мощности Wi-Fi оборудованием или динамический переход на другой частотный канал при обнаружении триггерного сигнала (в большинстве европейских стран наземные станции слежения за метеорологическими спутниками и спутниками связи, а также радары военного назначения работают в диапазонах, близких к 5 МГц). Этот стандарт является необходимым требованием ETSI, предъявляемым к оборудованию, допущенному для эксплуатации на территории стран Европейского Союза.

. 802.11i . В первых вариантах стандартов WiFi 802.11 для обеспечения безопасности сетей Wi-Fi использовался алгоритм WEP. Предполагалось, что этот метод может обеспечить конфиденциальность и защиту передаваемых данных авторизированных пользователей беспроводной сети от прослушивания.Теперь эту защиту можно взломать всего за несколько минут. Поэтому в стандарте 802.11i были разработаны новые методы защиты сетей Wi-Fi, реализованные как на физическом, так и программном уровнях. В настоящее время для организации системы безопасности в сетях Wi-Fi 802.11 рекомендуется использовать алгоритмы Wi-Fi Protected Access (WPA). Они также обеспечивают совместимость между беспроводными устройствами различных стандартов и различных модификаций. Протоколы WPA используют усовершенствованную схему шифрования RC4 и метод обязательной аутентификации с использованием EAP. Устойчивость и безопасность современных сетей Wi-Fi определяется протоколами проверки конфиденциальности и шифрования данных (RSNA, TKIP, CCMP, AES). Наиболее рекомендованным подходом является использование WPA2 с шифрованием AES (и не забывайте о 802.1х с применением, очень желательно, механизмов туннелирования, например EAP-TLS, TTLS и т.п.). .

. 802.11k . Этот стандарт фактически направлен на реализацию балансировки нагрузки в радиоподсистеме сети Wi-Fi. Обычно в беспроводной локальной сети абонентское устройство обычно соединяется с той точкой доступа, которая обеспечивает наиболее сильный сигнал. Нередко это приводит к перегрузке сети в одной точке, когда к одной Точке Доступа подключется сразу много пользователей. Для контроля подобных ситуаций в стандарте 802.11k предложен механизм, ограничивающий количество абонентов, подключаемых к одной Точке Доступа, и дающий возможность создания условий, при которых новые пользователи будут присоединяться к другой ТД даже не смотря на более слабый сигнал от нее. В этом случае аггрегированная пропускная способность сети увеличивается благодаря более эффективному использованию ресурсов.

. 802.11m . Поправки и исправления для всей группы стандартов 802.11 объединяются суммируются в отдельном документе с общим названием 802.11m. Первый выпуск 802.11m был в 2007 г, далее в 2011 г и т.д..

. 802.11p . Определяет взаимодействие Wi-Fi-оборудования, движущегося со скоростью до 200 км/ч мимо неподвижных Точек Доступа WiFi, удаленных на расстояние до 1 км. Часть стандарта Wireless Access in Vehicular Environment (WAVE). Стандарты WAVE определяют архитектуру и дополнительный набор служебных функций и интерфейсов, которые обеспечивают безопасный механизм радиосвязи между движущимися транспортными средствами. Эти стандарты разработаны для таких приложений, как, например, организация дорожного движения, контроль безопасности движения, автоматизированный сбор платежей, навигация и маршрутизация транспортных средств и др.

. 802.11s . Стандарт для реализации полносвязных сетей (), где любое устройство может служить как маршрутизатором, так и точкой доступа. Если ближайшая точка доступа перегружена, данные перенаправляются к ближайшему незагруженному узлу. При этом пакет данных передается (packet transfer) от одного узла к другому, пока не достигнет конечного места назначения. В данном стандарте введены новые протоколы на уровнях MAC и PHY, которые поддерживают широковещательную и многоадресную передачу (transfer), а также одноадресную поставку по самоконфигурирующейся системе точек доступа Wi-Fi. C этой целью в стандарте введен четырехадресный формат кадра. Примеры реализации сетей WiFi Mesh: , .

. 802.11t . Стандарт создан для институализации процесса тестирования решений стандарта IEEE 802.11. Описываются методики тестирования, способы измерений и обработки результатов (treatment), требования к испытательному оборудованию.

. 802.11u . Определяет процедуры взаимодействия сетей стандарта Wi-Fi с внешними сетями. Стандарт должен определять протоколы доступа, протоколы приоритета и запрета на работу с внешними сетями. На данный момент вокруг данного стандарта образовалось большое движение как в части разработки решений - Hotspot 2.0, так и в части организации межсетевого роуминга - создана и растет группа заинтересованных операторов, которые совместно решают вопросы роуминга для своих Wi-Fi-сетей в диалоге (Альянс WBA). Подробнее о Hotspot 2.0 в наших статьях: , .

. 802.11v . В стандарте должны быть разработаны поправки, направленные на совершенствование систем управления сетями стандарта IEEE 802.11. Модернизация на МАС- и PHY-уровнях должна позволить централизовать и упорядочить конфигурацию клиентских устройств, соединенных с сетью.

. 802.11y . Дополнительный стандарт связи для диапазона частот 3,65-3,70 ГГц. Предназначен для устройств последнего поколения, работающих с внешними антеннами на скоростях до 54 Мбит/с на расстоянии до 5 км на открытом пространстве. Стандарт полностью не завершен.

802.11w . Определяет методы и процедуры улучшения защиты и безопасности уровня управления доступом к среде передачи данных (МАС). Протоколы стандарта структурируют систему контроля целостности данных, подлинности их источника, запрета несанкционированного воспроизведения и копирования, конфиденциальности данных и других средств защиты. В стандарте введена защита фрейма управления (MFP: Management Frame Protection), а дополнительные меры безопасности позволяют нейтрализовать внешние атаки, такие, как, например, DoS. Немного больше по MFP здесь: , . Кроме того, эти меры обеспечат безопасность для наиболее уязвимой сетевой информации, которая будет передаваться по сетям с поддержкой IEEE 802.11r, k, y.

802.11ас. Новый стандарт WiFi, который работает только в частотной полосе 5ГГц и обеспечивает значительно бо льшие скорости как на индивидуального клиента WiFi, так и на Точку Доступа WiFi. Подробнее смотрите в нашей статье .


Ресурс постоянно пополняется! Для получения анонсов при выходе новых тематических статей или появлении новых материалов на сайте предлагаем подписаться .


Присоединяйтесь к нашей группе на

В начале развития интернета подключение сети осуществляли сетевым кабелем, который нужно было проводить в помещении таким образом, чтобы он не мешал. Его крепили и прятали, как могли. В старой мебели для компьютеров до сих пор остались отверстия для проведения кабеля.

Когда беспроводные технологии и сети Wi-Fi стали популярными, то необходимость проведения кабеля сети и его скрытия исчезла. Беспроводная технология позволяет получать интернет «по воздуху», если имеется маршрутизатор (точка доступа). Интернет начал развиваться в 1991 году, а ближе к 2010 году он уже стал особенно популярным.

Что такое Wi-Fi

Это современный стандарт получения и передачи данных от одного устройства к другому. При этом устройства должны быть оснащены радиомодулями. Такие модули Wi-Fi входят в состав многих электронных приборов и техники. Сначала они входили только в комплект планшетов, ноутбуков, смартфонов. Но теперь их можно найти в фотоаппаратах, принтерах, стиральных машинах, и даже мультиварках.

Принцип работы

Чтобы заходить в Wi-Fi, необходимо наличие точки доступа. Такой точкой на сегодняшний день в основном является маршрутизатор. Это маленькая коробочка из пластика, на корпусе которой имеется несколько гнезд для подключения интернета по проводу. Сам маршрутизатор связан с интернетом по сетевому проводу, называемому витой парой. По антенне точка доступа раздает информацию из интернета в сеть Wi-Fi, по которой различные устройства, имеющие приемник Wi-Fi, принимают эти данные.

Вместо маршрутизатора может работать ноутбук, планшет или смартфон. Они также должны иметь подключение к сети интернета по мобильной связи через сим-карту. Эти устройства имеют такой же принцип действия обмена данными, как у маршрутизатора.

Метод подключения интернета к точке доступа не имеет значения. Точки доступа делятся на частные и публичные. Первые применяются только для пользования самими владельцами. Вторые дают доступ в интернет за деньги, либо бесплатно большому количеству пользователей.

Публичные точки (горячие) чаще всего имеются в общественных местах. К таким сетям легко подключиться, находясь на территории этой точки, либо рядом с ней. В некоторых местах требует авторизоваться, но вам предлагают пароль и логин, если вы будете пользоваться платными услугами данного заведения.

Во многих городах вся их территория полностью охватывает сеть Wi-Fi. Чтобы подключиться к ней, нужно оплатить абонемент, который стоит не дорого. Потребителям предоставляют как коммерческие сети, так и со свободным доступом. Такие сети строят муниципалитеты, частные лица. Небольшие сети для жилых домов, общественных заведений со временем становятся крупнее, применяют пиринговое соглашение, чтобы взаимодействовать свободно друг с другом, работать на добровольной помощи и пожертвования других организаций.

Власти городов часто спонсируют аналогичные проекты. Например, во Франции в некоторых городах предоставляют доступ без ограничений в интернет тем, кто даст разрешение использовать крышу дома для установки антенны Wi-Fi. Много университетов на западе разрешают доступ в сеть студентам и посетителям. Число хот-спотов (публичных точек) неуклонно растет.

Стандарты Wi-Fi

IЕЕЕ 802.11 – протоколы для низких скоростей обмена данными, основной стандарт.

IЕЕЕ 802.11а – является несовместимым с 802.11b, для высоких скоростей, использует каналы частоты 5 ГГц. Способность пропускать данные до 54 Мбит/с.

IЕЕЕ 802.11b – стандарт для быстрых скоростей, частота канала 2,4 ГГц, пропускная способность до 11 Мбит/с.

IЕЕЕ 802.11g – скорость эквивалентна стандарту 11а, частота канала 2,4 ГГц, совместим с 11b, скорость пропускания до 54 Мбит/с.

IЕЕЕ 802.11n – наиболее прогрессивный коммерческий стандарт, частоты каналов 2,4 и 5 ГГц, может работать совместно с 11b, 11g, 11а. Наибольшая скорость работы 300 Мбит/с.

Чтобы подробнее представить работу различных стандартов беспроводной связи, рассмотрим информацию в таблице.

Применение сети Wi-Fi

Основное назначение беспроводной связи в быту – это вход в интернет для посещения сайтов, общение в сети, скачивание файлов. При этом нет нужды в проводах. С течением времени прогрессирует распространение точек доступа по территории городов. В будущем можно будет пользоваться интернетом с помощью сети Wi-Fi в любом городе без ограничений.

Такие модули применяются для создания сети внутри ограниченной территории между несколькими устройствами. Многие фирмы уже разработали мобильные приложения для мобильных гаджетов, которые дают возможность обмениваться информацией через сети Wi-Fi, но при этом не подключаясь к интернету. Это приложение организует тоннель шифрования данных, по которому будет передаваться информация другой стороне.

Обмен информацией осуществляется гораздо быстрее (в несколько десятков раз), чем по известному нам Блютузу. Смартфон может выступать и в роли игрового джойстика в соединении с игровой консолью, либо компьютером, выполнять функции пульта управления телевизором, работающим по Wi-Fi.

Порядок применения сети Wi-Fi

Для начала нужно купить маршрутизатор. В желтое или белое гнездо необходимо вставить сетевой провод, настроить по прилагаемой инструкции.

На принимающих устройствах с модулем Wi-Fi включают его, выполняют поиск необходимой сети и производят подключение. Чем большее количество устройств будет подключено к одному маршрутизатору, тем меньше будет скорость передачи данных, так как скорость поровну делится на все устройства.

Модуль Wi-Fi выглядит в виде обычной флешки, подключение осуществляется по интерфейсу USB. Он имеет невысокую стоимость. На мобильном устройстве можно включить точку доступа, которая будет исполнять роль маршрутизатора. Во время раздачи смартфоном интернета по точке доступа, на нем не рекомендуется слишком загружать процессор, то есть, нежелательно смотреть видео, или скачивать файлы, так как скорость делится между подключенным и раздающим устройством по остаточному принципу.

Wi-Fi технология дает возможность заходить в сеть интернета без кабеля. Источником такой беспроводной сети может быть любое устройство, у которого есть радиомодуль Wi-Fi. Радиус распространения зависит от антенны. С помощью Wi-Fi создают группы устройств, а также можно просто передавать файлы.

Достоинства Wi Fi
  • Не требуется протяжка проводов. За счет этого достигается экономия средств на прокладку кабеля, разводку, а также экономится время.
  • Неограниченное расширение сети, с повышением числа потребителей, точек сети.
  • Нет необходимости портить поверхности стен, потолков для прокладки кабеля.
  • Совместимость на глобальном уровне. Это группа стандартов, которая работает на устройствах, произведенных в разных странах.
Недостатки Wi Fi
  • В ближнем зарубежье применение сети Wi-Fi без разрешения допускается для создания сети в помещениях, складах, на производстве. Для связи двух соседних домов общим радиоканалом, требуется обращение в надзорный орган.
  • Правовой аспект. В разных странах относятся по-разному к применению передатчиков диапазона Wi-Fi. Некоторые государства требуют все сети регистрировать, если они действуют за помещениями. В других ограничивают мощность передатчика и определенные частоты.
  • Стабильность связи. Маршрутизаторы, установленные дома, распространенных стандартов раздают сигнал на расстояние 50 метров внутри зданий, и 90 метров за помещением. Многие электронные устройства, погодные факторы уменьшают уровень сигнала. Дальность расстояния зависит от частоты работы и других параметров.
  • Помехи. В городах возникает значительная плотность точек установки маршрутизаторов, поэтому часто возникают проблемы подключения к точке, если рядом есть другая точка, работающая на той же частоте с шифрованием.
  • Параметры изготовления. Часто бывает, что производители не придерживаются определенных стандартов изготовления устройств, поэтому точки доступа могут иметь нестабильную работу, скорость отличается от заявленной.
  • Потребление электроэнергии. Достаточно большой расход энергии, снижающий заряд батарей и аккумуляторов, увеличивает нагрев оборудования.
  • Безопасность. Шифрование данных по стандарту WЕР является ненадежным, легко взламываемым. Протокол WРА, который более надежен, не поддерживают точки доступа на старом оборудовании. Наиболее надежным считается сегодня протокол WРА2.
  • Ограничение функций. Во время передачи малых пакетов информации к ним присоединяют много информации служебного пользования. Это делает качество связи хуже. Поэтому не рекомендуют применять сети Wi-Fi для организации работы IР телефонии по протоколу RТР, так как нет гарантии по качеству связи.

Особенности Wi-Fi и Wi MAX

Технология сети Wi-Fi прежде всего создавалась для организаций, чтобы уйти от проводной связи. Однако сейчас эта беспроводная технология набирает популярность для частного сектора. Виды беспроводных связей Wi-Fi и Wi MAX родственные по выполняемым задачам, но решают разные проблемы.

Устройства Wi MAX имеют особые цифровые сертификаты связи. Достигается полная защита потоков данных. На базе Wi MAX образуются частные конфиденциальные сети, которые дают возможность создавать защищенные коридоры. Wi MAX передает необходимую информацию, не смотря на погоду, постройки и другие препятствия.

Также этот вид связи используют для видеосвязи высокого качества. Можно выделить основные его преимущества, состоящие в надежности, мобильности, высокой скорости.

Беспроводные компьютерные сети — это технология, позволяющая создавать вычислительные сети, полностью соответствующие стандартам для обычных проводных сетей (например, Ethernet), без использования кабельной проводки. В качестве носителя информации в таких сетях выступают радиоволны СВЧ-диапазона.

Беспроводные технологии — подкласс информационных технологий, служат для передачи информации на расстояние между двумя и более точками, не требуя связи их проводами. Для передачи информации может использоваться инфракрасное излучение, радиоволны, оптическое или лазерное излучение.

В настоящее время существует множество беспроводных технологий, наиболее часто известных пользователям по их маркетинговым названиям, таким как Wi-Fi, WiMAX, Bluetooth. Каждая технология обладает определёнными характеристиками, которые определяют её область применения.

Подходы к классификации беспроводных технологий

Существуют различные подходы к классификации беспроводных технологий.
  • По дальности действия
    • Беспроводные персональные сети (WPAN - Wireless Personal Area Networks). Примеры технологий - Bluetooth.
    • Беспроводные локальные сети (WLAN - Wireless Local Area Networks). Примеры технологий - Wi-Fi .
    • Беспроводные сети масштаба города (WMAN - Wireless Metropolitan Area Networks). Примеры технологий - WiMAX .
    • Беспроводные глобальные сети (WWAN - Wireless Wide Area Network). Примеры технологий - CSD , GPRS , EDGE , EV-DO , HSPA.
  • По топологии:
    • «Точка-точка» .
    • «Точка-многоточка» .
  • По области применения:
    • Корпоративные (ведомственные) беспроводные сети - создаваемые компаниями для собственных нужд.
    • Операторские беспроводные сети - создаваемые операторами связи для возмездного оказания услуг.

Кратким, но ёмким способом классификации может служить одновременное отображение двух наиболее существенных характеристик беспроводных технологий на двух осях: максимальная скорость передачи информации и максимальное расстояние.

Предлагаем рассмотреть первые 3, наиболее распространенные, категории подробнее.

WPAN беспроводная сеть, предназначенная для организации беспроводной связи между различного типа устройствами на ограниченной площади (например, в рамках квартиры, офисного рабочего места). Стандарты, определяющие методы функционирования сети, описаны в семействе спецификаций IEEE 802.15. Рассмотрим два наиболее перспективных стандарта: Bluetooth и ZigBee.

Bluetooth — производственная спецификация беспроводных персональных сетей (англ. Wireless personal area network, WPAN). Bluetooth обеспечивает обмен информацией между такими устройствами, как персональные компьютеры (настольные, карманные, ноутбуки), мобильные телефоны, принтеры, цифровые фотоаппараты, мышки, клавиатуры, джойстики, наушники, гарнитуры на надёжной, бесплатной, повсеместно доступной радиочастоте для ближней связи.

Bluetooth позволяет этим устройствам сообщаться, когда они находятся в радиусе до 200 метров друг от друга (дальность сильно зависит от преград и помех), даже в разных помещениях.
Принцип действия основан на использовании радиоволн. Радиосвязь Bluetooth осуществляется в ISM-диапазоне (Industry, Science and Medicine), который используется в различных бытовых приборах и беспроводных сетях (свободный от лицензирования диапазон 2,4-2,4835 ГГц). В Bluetooth применяется метод расширения спектра со скачкообразной перестройкой частоты (Frequency Hopping Spread Spectrum, FHSS). Метод FHSS прост в реализации, обеспечивает устойчивость к широкополосным помехам, а оборудование недорого.
Согласно алгоритму FHSS, в Bluetooth несущая частота сигнала скачкообразно меняется 1600 раз в секунду (всего выделяется 79 рабочих частот шириной в 1 МГц, а в Японии, Франции и Испании полоса у’же - 23 частотных канала). Последовательность переключения между частотами для каждого соединения является псевдослучайной и известна только передатчику и приёмнику, которые каждые 625 мкс (один временной слот) синхронно перестраиваются с одной несущей частоты на другую. Таким образом, если рядом работают несколько пар приёмник-передатчик, то они не мешают друг другу. Этот алгоритм является также составной частью системы защиты конфиденциальности передаваемой информации: переход происходит по псевдослучайному алгоритму и определяется отдельно для каждого соединения. При передаче цифровых данных и аудиосигнала (64 кбит/с в обоих направлениях) используются различные схемы кодирования: аудиосигнал не повторяется (как правило), а цифровые данные в случае утери пакета информации будут переданы повторно.
Протокол Bluetooth поддерживает не только соединение «точка-точка», но и соединение «точка-многоточка».

ZigBee - название набора сетевых протоколов верхнего уровня, использующих маленькие маломощные радиопередатчики, основанные на стандарте IEEE 802.15.4. Этот стандарт описывает беспроводные персональные вычислительные сети (WPAN). ZigBee нацелена на приложения, которым требуется длительное время автономной работы от батарей и высокая безопасность передачи данных при небольших скоростях передачи данных.

Спецификация ZigBee 1.0 была ратифицирована 14 декабря 2004 и доступна для членов альянса ZigBee. Сравнительно недавно, 30 октября 2007 г., была размещена спецификация ZigBee 2007. О первом профиле приложения - «Домашняя автоматизация» ZigBee, было объявлено 2 ноября 2007. ZigBee работает в промышленных, научных и медицинских (ISM-диапазон) радиодиапазонах: 868 МГц в Европе, 915 МГц в США и в Австралии, и 2.4 ГГц в большинстве стран в мире (под большинством юрисдикций стран мира). Как правило, в продаже имеются чипы ZigBee, являющиеся объединёнными радио- и микроконтроллерами с размером Flash-памяти от 60К до 128К таких производителей, как Jennic JN5148, Freescale MC13213, Ember EM250, Texas Instruments CC2430, Samsung Electro-Mechanics ZBS240 и Atmel ATmega128RFA1.

ZigBee может активироваться (то есть переходить от спящего режима к активному) за 15 миллисекунд или меньше, задержка отклика устройства может быть очень низкой, особенно по сравнению с Bluetooth, для которого задержка, образующаяся при переходе от спящего режима к активному, обычно достигает трёх секунд. Так как ZigBee большую часть времени находится в спящем режиме, уровень потребления энергии может быть очень низким, благодаря чему достигается длительная работа от батарей.

WLAN (Wireless Local Area Network)

Эта категория беспроводной сети предназначена для связи между собой различных устройств, подобно LAN на основе витой пары или оптоволокна, и при этом характеризуется высокой скоростью передачи данных на относительно небольшие расстояния. Взаимодействие устройств описывается семейством стандартов IEEE 802.11, включающим в себя более 20 спецификаций.
В связи с этим, многие ошибочно не видят разницы между Wi-Fi и IEEE 802.11. В настоящее время под Wi-Fi понимается торговая марка, которая показывает, что конкретное устройство отвечает спецификациям 802.11a, 802.11.b, 802.11.g.
Таким образом, семейство IEEE 802.11 можно разделить на три класса 802.11a, 802.11b, 802.11 i/e/…/w.

IEEE 802.11a один из стандартов беспроводных локальных сетей, описывающий принципы функционирования устройств в частотном диапазоне ISM (полоса частот 5,155,825 ГГц) по принципу OFDM (Orthogonal Frequency Division Multiplexing, мультиплексирование с разделением по ортогональным частотам). Полоса подразделяется на три рабочие зоны шириной 100 МГц, и для каждой зоны определена максимальная излучаемая мощность 50 мВт, 250 мВт, 1 Вт. Предполагается, что последняя зона частот будет использоваться для организации каналов связи между зданиями или наружными объектами, а две другие зоны внутри них. Редакцией стандарта, утвержденной в 1999 г., определены три обязательных скорости 6, 12 и 24 Мб/с и пять необязательных 9, 18, 36, 48 и 54 Мб/с. Однако этот стандарт не принят в России вследствие использования части этого диапазона ведомственными структурами. Возможным решением этой проблемы может стать спецификация 802.11h, которая дополнена алгоритмами эффективного выбора частот для беспроводных сетей, а также средствами управления использованием спектра, контроля над излучаемой мощностью, а также генерации соответствующих отчетов. Радиус действия устройств в закрытых помещениях составляет около 12 метров на скорости 54 Мб/с, и до 90 метров при скорости 6 Мб/с, в открытых помещениях или в зоне прямой видимости около 30 метров (54 Мб/с), и до 300 метров при 6 Мб/с. Тем не менее, некоторые производители внедряют в свои устройства технологии ускорения, благодаря которым возможен обмен данными в Turbo 802.11а на скоростях до 108 Мб/с.

IEEE 802.11b первый стандарт, получивший широкое распространение (именно он первоначально носил торговую марку Wi-Fi) и позволивший создавать беспроводные локальные сети в офисах, домах, квартирах. Эта спецификация описывает принципы взаимодействия устройств в диапазоне 2,4 ГГц (2,42,4835 ГГц), разделенном на три неперекрывающихся канала по технологии DSSS (Direct-Sequence Spread-Spectrum, широкополосная модуляция с прямым расширением спектра) и, опционально, PBCC (Packet Binary Convolutional Coding, двоичное свёрточное кодирование). Согласно этой технологии модуляции, производится генерирование избыточного набора битов на каждый переданный бит полезной информации, благодаря этому осуществляется более высокая вероятность восстановления переданной информации и лучшая помехозащищенность (шумы и помехи идентифицируются как сигнал с неодинаковым набором битов и потому отфильтровываются). Стандартом определены четыре обязательные скорости 1, 2, 5,5 и 11 Мб/с. Что же касается возможного радиуса взаимодействия устройств, то он составляет в закрытых помещениях около 30 метров на скорости 11 Мб/с, и до 90 метров при скорости 1 Мб/с, в открытых помещениях или в зоне прямой видимости около 120 метров (11 Мб/с), и до 460 метров при 1 Мб/с. В условиях постоянно увеличивающихся потоков данных эта спецификация практически исчерпала себя, и на смену ей пришел стандарт IEEE 802.11g.

IEEE 802.11g стандарт беспроводной сети, явившийся логическим развитием 802.11b, в том смысле, что использует тот же частотный диапазон и предполагает обратную совместимость с устройствами, отвечающими стандарту 802.11b (другими словами, обязательна совместимость 802.11g-оборудования с более старой спецификацией 802.11b). Одновременно с этим, этот представитель семейства спецификаций, как и полагается, попытался взять все лучшее от пионеров 802.11b и 802.11a. Итак, основной принцип модуляции позаимствован у 802.11a OFDM совместно с технологией CCK (Complementary Code Keying, кодирование комплементарным кодом), а дополнительно предусмотрено использование технологии PBCC. Благодаря этому, в стандарте предусмотрены шесть обязательных скоростей 1, 2, 5,5, 6, 11, 12, 24 Мб/с, и четыре опциональных 33, 36, 48 и 54 Мб/с. Радиус зоны действия увеличен в закрытых помещениях до 30 метров (54 Мб/с), и до 91 метра при скорости 1 Мб/с, в пределах же прямой видимости связь доступна на расстоянии 120 метров со скоростью 54 Мб/с, а при удалении на 460 метров возможна работа со скоростью 1 Мб/с.
Выделенный нами в отдельный класс набор спецификаций 802.11 i/e/…/w главным образом предназначен для описания функционирования различных служебных компонент и разработки новых технологий и стандартов беспроводной связи. К примеру, работы беспроводных мостов, требований к физическим параметрам каналов (мощность излучения, диапазоны частот), спецификаций, ориентированных на различные категории пользователей и т. д. В плане надстроек и новых стандартов организации беспроводных сетей из этой группы мы уже рассмотрели 802.11.h. В качестве еще одного примера обратим внимание на 802.11n. Согласно сообщению международного консорциума EWC (Enhanced Wireless Consortium), использование 802.11n высокоскоростной стандарт, в котором предусмотрена обратная совместимость с 802.11a/b/g, а скорость передачи данных будет достигать 600 Мб/с. Это позволит использовать его в задачах, где использование Wi-Fi ограничивалось недостаточной скоростью.

IEEE 802.11n - версия стандарта 802.11 для сетей Wi-Fi.
Этот стандарт был утверждён 11 сентября 2009. Стандарт 802.11n повышает скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с (стандарт IEEE 802.11ac до 1.3 Гбит/с), применяя передачу данных сразу по четырем антеннам. По одной антенне - до 150 Мбит/с.
Устройства 802.11n работают в диапазонах 2,4-2,5 или 5,0 ГГц.
Кроме того, устройства 802.11n могут работать в трёх режимах:

  • наследуемом (Legacy), в котором обеспечивается поддержка устройств 802.11b/g и 802.11a;
  • смешанном (Mixed), в котором поддерживаются устройства 802.11b/g, 802.11a и 802.11n;
  • «чистом» режиме - 802.11n (именно в этом режиме и можно воспользоваться преимуществами повышенной скорости и увеличенной дальностью передачи данных, обеспечиваемыми стандартом 802.11n).

Черновую версию стандарта 802.11n (DRAFT 2.0) поддерживают многие современные сетевые устройства. Итоговая версия стандарта (DRAFT 11.0), которая была принята 11 сентября 2009 года, обеспечивает скорость до 600 Мбит/с, Многоканальный вход/выход, известный, как MIMO и большее покрытие. На 2011 год, имеется небольшое количество устройств соответствующих финальному стандарту. Например у компании D-LINK, основная продукция проходила стандартизацию в 2008 году. Существуют добропорядочные компании, занимающиеся перестандартизацией основной продукции.
ООО “АйТи-Вэйв” предлагает оборудование, отвечающее самым последним требованиям рынка, такое как , а так же и серия продуктов . Представленное оборудование построено на основе данного стандарта, но обладает более широкой функциональностью, благодаря фирменным разработкам Proxim и Infinet.

WMAN (Wireless Metropolitan Area Networks) - беспроводные сети масштаба города. Предоставляют широкополосный доступ к сети через радиоканал.
Стандарт IEEE 802.16, опубликованный в апреле 2002 года, описывает wireless MAN Air Interface. 802.16 - это так называемая технология «последней мили», которая использует диапазон частот от 10 до 66 GHz. Так как это сантиметровый и миллиметровый диапазон, то необходимо условие «прямой видимости». Стандарт поддерживает топологию «точка-многоточка», технологии frequency-division duplex (FDD) и time-division duplex (TDD), с поддержкой quality of service (QoS). Возможна передача звука и видео. Стандарт определяет пропускную способность 120 Мбит/с на каждый канал в 25 MHz.
Стандарт 802.16a последовал за стандартом 802.16. Он был опубликован в апреле 2003 и использует диапазон частот от 2 до 11 GHz. Стандарт поддерживает ячеистую топологию (mesh networking). Стандарт не накладывает условие «прямой видимости».

802.16e(mobile WiMAX) — технология беспроводного подключения к интернету, разработанная южнокорейскими телекоммуникационными компаниями(WiBro (сокращение от Wireless Broadband)).
В технологии использует временное мультиплексирование, ортогональное разделение частот, ширина канала в 8,75 МГц. Предполагалось достичь большей скорости передачи данных, чем могут использовать мобильные телефоны (как в стандарте CDMA 1x) и обеспечить мобильность для широкополосных подключений.
В феврале 2002 г. корейское правительство выделило 100 МГц-полосу в диапазоне 2,3-2,4 ГГц, а в 2004 году спецификации были зафиксированы в корейском стандарте WiBro Phase 1, которые затем были внесены в международный стандарт IEEE 802.16e (Mobile WiMAX). Базовые станции этого стандарта обеспечивают суммарную пропускную способность до 30-50 Мбит/с на каждого оператора и могут покрывать радиус от 1 до 5 км. Подключение сохраняется для движущихся объектов при скорости до 120 км/ч, что значительно лучше, чем у локальных беспроводных сетей - их ограничение приблизительно равно скорости пешехода, но хуже, чем сетей сотовой связи - до 250 км/ч. Реальное тестирование сети в г. Пусан во время проведения саммита АТЭС показало, что реальные скорости и ограничения значительно ниже, чем в теории.
Стандарт поддерживает QoS - приоритеты в передаче данных разного типа, что позволяет надежно передавать видеопотоки и другие данные, чувствительные к задержкам в канале. В этом заключаются преимущества стандарта перед стационарным WiMAX (802.16d). Также его требования значительно больше проработаны в деталях, чем в стандарте WiMAX.
На оборудовании данного стандарта, были построены первые варианты сети Yota(Скартел).

Сравнительная таблица стандартов беспроводной связи

Технология Стандарт Использование Пропускная способность Радиус действия Частоты
Wi-Fi 802.11a WLAN до 54 Мбит/с до 300 метров 5,0 ГГц
Wi-Fi 802.11b WLAN до 11 Мбит/с до 300 метров 2,4 ГГц
Wi-Fi 802.11g WLAN до 54 Мбит/с до 300 метров 2,4 ГГц
Wi-Fi 802.11n WLAN до 450 Мбит/с (в перспективе до 600 Мбит/с) до 300 метров 2,4 - 2,5 или 5,0 ГГц
WiMax 802.16d WMAN до 75 Мбит/с 25-80 км 1,5-11 ГГц
WiMax 802.16e Mobile WMAN до 40 Мбит/с 1-5 км 2,3-13,6 ГГц
WiMax 2 802.16m WMAN, Mobile WMAN до 1 Гбит/с (WMAN), до 100 Мбит/с (Mobile WMAN) н/д (стандарт в разработке) н/д (стандарт в разработке)
Bluetooth v. 1.1 802.15.1 WPAN до 1 Мбит/с до 10 метров 2,4 ГГц
Bluetooth v. 2.0 802.15.3 WPAN до 2,1 Мбит/с до 100 метров 2,4 ГГц
Bluetooth v. 3.0 802.11 WPAN от 3 Мбит/с до 24 Мбит/с до 100 метров 2,4 ГГц
UWB 802.15.3a WPAN

Стандарт IEEE 802.11. В 1990 г. Комитет IEEE 802 сформировал рабочую группу 802.11 для разработки стандарта для беспроводных локальных сетей. Работы по созданию стандарта были завершены через 7 лет. В 1997 г. была ратифицирована первая спецификация беспроводного стандарта IEEE 802.11, обеспечивающего передачу данных с гарантированной скоростью 1 Мб/с (в некоторых случаях до 2 Мб/с) в полосе частот 2,4 ГГц. Эта полоса частот доступна для нелицензионного использования в большинстве стран мира.

Стандарт IEEE 802.11 является базовым стандартом и определяет протоколы, необходимые для организации беспроводных локальных сетей WLAN (Wireless Local Area Network). Основные из них - протокол управления доступом к среде MAC (Medium Accsess Control - нижний подуровень канального уровня) и протокол PHY передачи сигналов в физической среде. В качестве физической среды допускается использование радиоволн и инфракрасного излучения.

В основу стандарта IEEE 802.11 положена сотовая архитектура, причем сеть может состоять как из одной, так и нескольких ячеек. Каждая из них управляется базовой станцией, называемой точкой доступа АР (Access Point), которая вместе с находящимися в пределах радиуса ее действия рабочими станциями пользователей образует базовую зону обслуживания BSS (Basic Service Set). Точки доступа многосотовой сети взаимодействуют между собой через распределительную систему DS (Distribution System), представляющую собой эквивалент магистрального сегмента кабельных ЛС. Вся инфраструктура, включающая точки доступа и распределительную систему образует расширенную зону обслуживания ESS (Extended Service Set). Стандартом предусмотрен также односотовый вариант беспроводной сети, который может быть реализован и без точки доступа, при этом часть ее функций выполняются непосредственно рабочими станциями.

Для обеспечения перехода мобильных рабочих станций из зоны действия одной точки доступа к другой в многосотовых системах предусмотрены специальные процедуры сканирования (активного и пассивного прослушивания эфира) и присоединения (Association), однако строгих спецификаций по реализации роуминга стандарт IEEE 802.11 не предусматривает.

Для защиты WLAN стандартом IEEE 802.11 предусмотрен алгоритм WEP (Wired Equivalent Privacy). Он включает средства противодействия НСД к сети, а также шифрование для предотвращения перехвата информации.

Однако заложенная в первую спецификацию стандарта IEEE 802.11 скорость передачи данных в беспроводной сети перестала удовлетворять потребностям пользователей: алгоритм WEP имел ряд существенных недостатков - отсутствие управления ключом, использование общего статического ключа, малые разрядности ключа и вектора инициализации, сложности использования алгоритма RC4.

Чтобы сделать технологию Wireless LAN недорогой, популярной и удовлетворяющей жестким требованиям бизнес-приложений, разработчики создали семейство новых спецификаций стандарта IEEE 802.11 - а, Ь, ..., i. Стандарты этого семейства, по сути, являются беспроводными расширениями протокола Ethernet, что обеспечивает хорошее взаимодействие с проводными сетями Ethernet.

Стандарт IEEE 802.11b был ратифицирован IEEE в сентябре 1999 г. как развитие базового стандарта 802.11; в нем используется полоса частот 2,4 ГГц, скорость передачи достигает 11 Мб/с (подобно Ethernet). Благодаря ориентации на освоенный диапазон 2,4 ГГц стандарт 802.1 lb завоевал большую популярность у производителей оборудования. В качестве базовой радиотехнологии в нем используется метод распределенного спектра с прямой последовательностью DSSS (Direct Sequence Spread Spectrum), который отличается высокой устойчивостью к искажению данных помехами, в том числе преднамеренными. Этот стандарт получил широкое распространение, и беспроводные LAN стали привлекательным решением с технической и финансовой точки зрения.

Стандарт IEEE 802.11а предназначен для работы в частотном диапазоне 5 ГГц. Скорость передачи данных до 54 Мбит/с, т. е. примерно в 5 раз быстрее сетей 802.1 lb. Ассоциация WECA называет этот стандарт Wi-Fi5. Это наиболее широкополосный стандарт из семейства стандартов 802.11. Определены три обязательные скорости - 6, 12 и 24 Мбит/с и пять необязательных - 9, 18, 36, 48 и 54 Мбит/с. В качестве метода модуляции сигнала принято ортогональное частотное мультиплексирование OFDM (Orthogonal Frequency Division Multiplexing). Его отличие от метода DSSS заключается в том, что OFDM предполагает параллельную передачу полезного сигнала одновременно по нескольким частотам диапазона, в то время как технологии расширения спектра DSSS передают сигналы последовательно. В результате повышается пропускная способность канала и качество сигнала. К недостаткам стандарта 802.11а относится большая потребляемая мощность радиопередатчиков для частот 5 ГГц, а также меньший радиус действия (около 100 м).

Для простоты запоминания в качестве общего имени для стандартов 802.11b и 802.11а, а также всех последующих, относящихся к беспроводным локальным сетям (WLAN), Ассоциацией беспроводной совместимости с Ethernet WECA (Wireless Ethernet Compatibility Aliance) был введен термин Wi-Fi (Wireless Fidelity). Если устройство помечено этим знаком, оно протестировано на совместимость с другими устройствами 802.11.

Стандарт IEEE 802.11g представляет собой развитие 802.11b и обратно совместим с 802.11b; предназначен для обеспечения скоростей передачи данных до 54 Мбит/с. В числе достоинств 802.1 lg надо отметить низкую потребляемую мощность, большие расстояния (до 300 м) и высокую проникающую способность сигнала.

Стандарт IEEE 802. lli - стандарт обеспечения безопасности в беспроводных сетях; ратифицирован IEEE в 2004 г. Этот стандарт решил существовавшие проблемы в области аутентификации и протокола шифрования, обеспечив значительно более высокий уровень безопасности. Стандарт 802.1 И может применяться в сетях Wi-Fi, независимо от используемого стандарта - 802.1 la, b или g.

Существуют два очень похожих стандарта - WPA и 802.11 i. WPA был разработан в Wi-Fi Alliance как решение, которое можно применить немедленно, не дожидаясь завершения длительной процедуры ратификации 802.1 П в IEEE. Оба стандарта используют механизм 802.1 х (см. далее) для обеспечения надежной аутентификации, оба используют сильные алгоритмы шифрования и предназначены для замены протокола WEP.

Их основное отличие заключается в использовании различных механизмов шифрования. В WPA применяется протокол TKIP (Temporal Key Integrity Protocol), который, также как и WEP, использует шифр RC4, но значительно более безопасным способом. Обеспечение конфиденциальности данных в стандарте IEEE 802.1 li основано на использовании алгоритма шифрования AES (Advanced Encryption Standard). Использующий его защитный протокол получил название ССМР (Counter-Mode СВС MAC Protocol). Алгоритм AES обладает высокой криптостойкостью. Длина ключа AES равна 128, 192 или 256 бит, что обеспечивает наиболее надежное шифрование из доступных сейчас.

Стандарт 802.1 И предполагает наличие трех участников процесса аутентификации. Это сервер аутентификации AS (Authentication Server), точка доступа АР (Access Point) и рабочая станция STA (Station). В процессе шифрования данных участвуют только АР и STA (AS не используется). Стандарт предусматривает двустороннюю аутентификацию (в отличие от WEP, где аутентифицируется только рабочая станция, но не точка доступа). При этом местами принятия решения о разрешении доступа являются сервер аутентификации AS и рабочая станция STA, а местами исполнения этого решения - точка доступа АР и STA.

Для работы по стандарту 802.Hi создается иерархия ключей, содержащая мастер-ключ МК (Master Key), парный мастер-ключ РМК (Pairwise Master Key), парный временный ключ РТК (Pairwise Transient Key), а также групповые временные ключи GTK (Group Transient Key), служащие для защиты широковещательного сетевого трафика.

МК - это симметричный ключ, реализующий решение STA и AS о взаимной аутентификации. Для каждой сессии создается новый МК.

РМК - обновляемый симметричный ключ, владение которым означает разрешение (авторизацию) на доступ к среде передачи данных в течение данной сессии. РМК создается на основе МК. Для каждой пары STA и АР в каждой сессии создается новый РМК.

РТК - это коллекция операционных ключей, которые используются для привязки РМК к данным STA и АР, распространения GTK и шифрования данных.

Процесс аутентификации и доставки ключей определяется стандартом 802.1 х. Он предоставляет возможность использовать в беспроводных сетях такие традиционные серверы аутентификации, как RADIUS (Remote Authentication Dial-In User Server). Стандарт 802.1 li не определяет тип сервера аутентификации, но использование RADIUS для этой цели является стандартным решением.

Транспортом для сообщений 802.1х служит протокол ЕАР (Extensible Authentication Protocol). ЕАР позволяет легко добавлять новые методы аутентификации. Точке доступа не требуется знать об используемом методе аутентификации, поэтому изменение метода никак не затрагивает точку доступа. Наиболее популярные методы ЕАР - это LEAP, РЕАР, TTLS и FAST. Каждый из методов имеет свои сильные и слабые стороны, условия применения, по-разному поддерживается производителями оборудования и ПО.

Выделяют пять фаз работы 802.11 i.

Первая фаза - обнаружение. В этой фазе рабочая станция STA находит точку доступа АР, с которой может установить связь и получает от нее используемые в данной сети параметры безопасности. Таким образом STA узнает идентификатор сети SSID и методы аутентификации, доступные в данной сети. Затем STA выбирает метод аутентификации, и между STA и АР устанавливается соединение. После этого STA и АР готовы к началу второй фазы 802.1х.

Вторая фаза - аутентификация. В этой фазе выполняется взаимная аутентификация STA и сервера AS, создаются МК и РМК. В данной фазе STA и АР блокируют весь трафик, кроме трафика 802.1х.

Третья фаза - AS перемещает ключ РМК на АР. Теперь STA и АР владеют действительными ключами РМК.

Четвертая фаза - управление ключами 802.1 х. В этой фазе происходит генерация, привязка и верификация ключа РТК.

Пятая фаза - шифрование и передача данных. Для шифрования используется соответствующая часть РТК.

Стандартом 802.1 И предусмотрен режим PSK (Pre-Shared Key), который позволяет обойтись без сервера аутентификации AS. При использовании этого режима на STA и на АР вручную вводится Pre-Shared Key, который используется в качестве РМК. Дальше генерация РТК происходит описанным выше порядком. Режим PS К может использоваться в небольших сетях, где нецелесообразно устанавливать AS.

 
Статьи по теме:
Прошивка телефона, смартфона и планшета ZTE
On this page, you will find the official link to download ZTE Blade L3 Stock Firmware ROM (flash file) on your Computer. Firmware comes in a zip package, which contains Flash File, Flash Tool, USB Driver and How-to Flash Manual. How to FlashStep 1 : Downl
Завис компьютер — какие клавиши нажать на клавиатуре, как перезагрузить или выключить
F1- вызывает «справку» Windows или окно помощи активной программы. В Microsoft Word комбинация клавиш Shift+F1 показывает форматирование текста; F2- переименовывает выделенный объект на рабочем столе или в окне проводника; F3- открывает окно поиска файла
ISBN, УДК, ББК, штриховые коды, выходные данные
Для публикации работы (статьи, книги, диссертации) автору необходимо указать тематический раздел (индекс) существующих классификаций, к которому эта работа относится, и авторский знак. Классификационные индексы издания – это индексы УДК,ББК и ГРНТИ. УДК –
Скачать клавиатурный тренажер для детей на русском бесплатно
Основные возможности уникальный альтернативный вариант для расположения рук на клавиатуре; поддержка различных раскладок и языков; звуковые эффекты для музыкального сопровождения работы; специальные уроки, которые помогают запоминать расположение клави