Какое значение имеет длина волны. Длина волны

Длину волны можно также определить:

  • как расстояние, измеренное в направлении распространения волны, между двумя точками в пространстве, в которых фаза колебательного процесса отличается на 2π;
  • как путь, который проходит фронт волны за интервал времени, равный периоду колебательного процесса;
  • как пространственный период волнового процесса.

Представим себе волны, возникающие в воде от равномерно колеблющегося поплавка, и мысленно остановим время. Тогда длина волны - это расстояние между двумя соседними гребнями волны, измеренное в радиальном направлении. Длина волны - одна из основных характеристик волны наряду с частотой , амплитудой , начальной фазой, направлением распространения и поляризацией . Для обозначения длины волны принято использовать греческую букву λ {\displaystyle \lambda } , размерность длины волны - метр.

Как правило, длина волны используется применительно к гармоническому или квазигармоническому (например, затухающему или узкополосному модулированному) волновому процессу в однородной, квазиоднородной или локально однородной среде. Однако формально длину волны можно определить по аналогии и для волнового процесса с негармонической, но периодической пространственно-временной зависимостью, содержащей в спектре набор гармоник. Тогда длина волны будет совпадать с длиной волны основной (наиболее низкочастотной, фундаментальной) гармоники спектра.

Энциклопедичный YouTube

    1 / 5

    Амплитуда, период, частота и длина волны периодических волн

    Звуковые колебания - Длина волны

    5.7 Длина волны. Скорость волны

    Урок 370. Фазовая скорость волны. Скорость поперечной волны в струне

    Урок 369. Механические волны. Математическое описание бегущей волны

    Субтитры

    В прошлом видео мы обсуждали, что произойдёт, если взять, скажем, верёвку, дёрнуть за левый конец – это, конечно, может быть и правый конец, но пусть будет левый - итак, дёрнуть вверх, а потом вниз и затем назад, в исходное положение. Мы передаём верёвке некое возмущение. Это возмущение может выглядеть примерно так, если я дёрну верёвку вверх и вниз один раз. Возмущение будет передаваться по верёвке приблизительно таким образом. Закрасим чёрным цветом. Cразу после первого цикла – рывка вверх и вниз - верёвка будет выглядеть примерно так. Но если немного подождать, она приобретёт примерно такой вид, учитывая, что мы дёрнули один раз. Импульс передаётся дальше по верёвке. В прошлом видео мы определили это возмущение, передающееся по верёвке или в данной среде, хотя среда не обязательное условие. Мы назвали его волной. И, в частности, данная волна - это импульс. Это импульсная волна, потому что здесь в сущности было только одно возмущение верёвки. Но если мы продолжим периодически дёргать верёвку вверх и вниз с регулярными интервалами, то она будет выглядеть примерно, примерно так. Я постараюсь изобразить как можно аккуратнее. Она будет выглядеть вот так, и колебания, или возмущения, будут передаваться вправо. Они будут передаваться вправо с некой скоростью. И в этом видео я хочу рассмотреть именно волны такого типа. Представьте, что я периодически дёргаю левый конец верёвки вверх и вниз, вверх и вниз, создавая периодические колебания. Мы назовем периодическими волнами. Это периодическая волна. Движение повторяется снова и снова. Сейчас я хотел бы обсудить некоторые свойства периодической волны. Во-первых, можно заметить, что при движении верёвка поднимается и опускается на некоторое расстояние от первоначального положения, вот оно. Насколько удалены высшая и низшая точки от начального положения? Это называется амплитуда волны. Это расстояние (выделю его пурпурным цветом) - это расстояние называется амплитуда. Моряки иногда говорят о высоте волны. Под высотой обычно подразумевается расстояние от подошвы волны до её гребня. Мы говорим об амплитуде, или расстоянии от изначального, равновесного положения до максимума. Обозначим максимум. Это высшая точка. Высшая точка волны, или ее вершина. А это подошва. Если бы вы сидели в лодке, вас бы интересовала высота волны, все расстояние от вашей лодки до высшей точки волны. Ладно, не будем удаляться от темы. Вот что интересно. Далеко не все волны создаются мной, дёргающим левый конец верёвки. Но, думаю, вы поняли, что эта схема может демонстрировать множество разных типов волн. И это по сути отклонение от средней, или нулевой, позиции, амплитуда. Возникает вопрос. Ясно, как далеко отклоняется верёвка от средней позиции, но как часто это происходит? Сколько нужно времени, чтобы веревка поднялась, опустилась и вернулась назад? Как долго продолжается каждый цикл? Цикл – это движение вверх, вниз и на изначальную точку. Сколько длится каждый цикл? Можно сказать, какова продолжительность каждого периода? Мы сказали, что это периодическая волна. Период – это повторение волны. Продолжительность одного полного цикла называется периодом. И период измеряется временем. Может быть, я дёргаю верёвку каждые две секунды. Чтобы она поднялась, опустилась и вернулась к середине, нужно две секунды. Период – это две секунды. И другая близкая характеристика – сколько циклов в секунду я делаю? Другими словами, сколько секунд приходится на каждый цикл? Давайте это запишем. Сколько циклов в секунду я произвожу? То есть, сколько секунд приходится на каждый цикл? Сколько секунд приходится на каждый цикл? Так что период, например, может составлять 5 секунд на один цикл. Или, возможно, 2 секунды. Но сколько циклов происходит в секунду? Зададим противоположный вопрос. Не сколько секунд занимает подъём вверх, спуск вниз и возврат к середине. А сколько в каждую секунду умещается циклов спуска, подъёма и возврата? Сколько циклов происходит в секунду? Это свойство, противоположное периоду. Период обычно обозначается прописным Т. Это частота. Запишем. Частота. Она обычно обозначается строчным f. Она характеризует число колебаний в секунду. Так что, если полный цикл занимает 5 секунд, это значит, что в секунду у нас будет происходить 1/5 цикла. Я просто перевернул вот это соотношение. Это вполне логично. Потому что период и частота – обратные друг другу характеристики. Это – сколько секунд в цикле? Сколько времени нужно на подъём, спуск и возврат? А это – сколько спусков, подъёмов и возвратов в одной секунде? Так что они обратны друг другу. Можно сказать, что частота равна отношению единицы к периоду. Или период равен отношению единицы к частоте. Так, если верёвка вибрирует с частотой, скажем, 10 циклов в секунду… И, кстати, единица измерения частоты - это герц, так что запишем это как 10 герц. Вы, наверное уже слышали нечто подобное. 10 Гц означает просто 10 циклов в секунду. Если частота - это 10 циклов в секунду, то период равен ее отношению к единице. Делим 1 на 10 секунд, что вполне логично. Если верёвка может 10 раз за секунду подняться, опуститься, и вернуться в нейтральное положение, значит за 1/10 секунды она сделает это один раз. Ещё нас интересует, как быстро волна распространяется в данном случае вправо? Если я тяну за левый конец верёвки, как быстро она двигается вправо? Это скорость. Чтобы узнать это, нам нужно вычислить, какое расстояние волна проходит за один цикл. Или за один период. После того как я дернул один раз, как далеко уйдёт волна? Каково расстояние от этой точки на нейтральном уровне до этой точки? Это называется длина волны. Длина волны. Ее можно определить множеством способов. Можно сказать, что длина волны – это расстояние, которое проходит начальный импульс за один цикл. Или что это расстояние от одной высшей точки до другой. Это тоже длина волны. Или расстояние от одной подошвы до другой подошвы. Это тоже длина волны. Но в общем длина волны – это расстояние между двумя одинаковыми точками волны. От этой точки до этой. Это тоже длина волны. Это расстояние между началом одного полного цикла и его завершением в точно такой же точке. При этом, когда я говорю про одинаковые точки, эта точка не считается. Потому что в данной точке, хотя она в той же позиции, волна опускается. А нам нужна точка, где волна находится в той же самой фазе. Посмотрите, здесь идет движение вверх. Так что нам нужна фаза подъёма. Это расстояние – не длина волны. Чтобы пройти одну длину, нужно пройти в ту же самую фазу. Нужно, чтобы движение было в том же направлении. Вот это тоже длина волны. Итак, если мы знаем, какое расстояние волна проходит за один период… Давайте запишем: длина волны равна расстоянию, которое проходит волна за один период. Длина волны равна расстоянию, которое проходит волна за один период. Или, можно сказать, за один цикл. Это одно и то же. Потому что период – это время, за которое волна завершает один цикл. Один подъём, спуск и возврат к нулевой точке. Так что, если мы знаем расстояние и время, за которое волна его проходит, то есть период, как мы можем вычислить скорость? Скорость равна отношению расстояния ко времени движения. Скорость - это отношение расстояния ко времени движения. И для волны скорость можно было бы обозначить как вектор, но это, я думаю, и так понятно. Итак, скорость отражает то, какое расстояние волна проходит за период? А само расстояние – это длина волны. Волновой импульс пройдёт ровно столько. Такой будет длина волны. Итак, мы проходим это расстояние, и сколько времени это занимает? Это расстояние проходится за период. То есть, это длина волны, делённая на период. Длина волны, делённая на период. Но мы уже знаем, что отношение единицы к периоду - это то же самое, что и частота. Так что можно записать это как длину волны… И, кстати, важный момент. Длина волны обычно обозначается греческой буквой лямбда. Так что, можно сказать, скорость равна длине волны, делённой на период. Что равно длине волны, умноженной на единицу, делённую на период. Мы только что выяснили, что отношение единицы к периоду - это то же самое, что частота. Так что скорость равна произведению длины волны и частоты. Таким образом, вы решите все основные задачи, с которыми можно столкнуться в теме волн. Например, если нам дано, что скорость, равна 100 метров в секунду и направлена вправо… Сделаем такое предположение. Скорость - это вектор, и нужно указывать её направление. Пусть частота будет равна, скажем, 20 циклов в секунду, это то же самое, что 20 Гц. Итак, еще раз, частота будет равна 20 циклов в секунду или 20 Гц. Представьте, что вы смотрите в маленькое окно и видите только эту часть волны, только эту часть моей верёвки. Если вы знаете про 20 Гц, то вы знаете, что за 1 секунду вы увидите 20 спусков и подъёмов. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13... За 1 секунду вы увидите, что волна поднимется и опустится 20 раз. Вот что значит частота в 20 Гц, или 20 циклов в секунду. Итак, нам дана скорость, дана частота. Какова будет длина волны? В этом случае, она будет равна… Вернёмся к скорости: скорость равна произведению длины волны и частоты, правда? Разделим обе части на 20. Кстати, давайте проверим единицы измерения: это метры в секунду. Получится: λ умножить на 20 циклов в секунду. λ умножить на 20 циклов в секунду. Если мы разделим обе части на 20 циклов в секунду, то получим 100 метров в секунду умножить на 1/20 секунды за цикл. Тут остается 5. Тут 1. Получаем 5, секунды сокращаются. И мы получаем 5 метров в цикл. 5 метров за цикл в данном случае и будет длиной волны. 5 метров в цикл. Замечательно. Можно было бы сказать, что это 5 метров за цикл, но длина волны предполагает, что имеется в виду расстояние, пройденное за цикл. В этом случае, если волна распространяется вправо со скоростью 100 метров в секунду, и это частота (мы видим, что волна колеблется вверх-вниз 20 раз в секунду), то это расстояние, должно равняться 5 метрам. Точно так же можно вычислить период. Период равен отношению единицы к частоте. Он равен 1/20 секунды за цикл. 1/20 секунды за цикл. Я не хочу, чтобы вы запоминали формулы, я хочу, чтобы вы поняли их логику. Надеюсь, это видео вам помогло. Используя формулы, вы можете ответить почти на любой вопрос, если есть 2 переменные и нужно вычислить третью. Надеюсь, это окажется полезным для вас. Subtitles by the Amara.org community

Длина волны - пространственный период волнового процесса

Длина волны в среде

В оптически более плотной среде (слой выделен темным цветом) длина электромагнитной волны сокращается. Синяя линия - распределение мгновенного (t = const) значения напряженности поля волны вдоль направления распространения. Изменение амплитуды напряженности поля, обусловленное отражением от границ раздела и интерференцией падающей и отраженных волн, на рисунке условно не показано.

Свет играет важную роль в фотографии. Привычный всем солнечный свет имеет достаточно сложный спектральный состав.

Спектральный состав видимой части солнечного света характеризуется наличием монохроматических излучений, длина волны которых находится в пределах 400-720 нм, по другим данным 380-780 нм.

Иными словами солнечный свет может быть разложен на монохроматические составляющие. В тоже время монохроматические (или одноцветные) составляющие дневного света не могут быть выделены однозначно , а, ввиду непрерывности спектра, плавно переходят от одного цвета в другой.

Считается, что определённые цвета находятся в определённых пределах длин волн . Это иллюстрирует Таблица 1.

Длины световых волн

Таблица 1

Для фотографов представляет определённый интерес распределение длин волн по зонам спектра.

Всего выделяют три зоны спектра : Синюю (B lue), Зелёную (G reen) и Красную (R ed).

По первым буквам английских слов R ed (красный), G reen (зелёный), B lue (синий) получила название система представления цвета – RGB .

В RGB -системе работает множество устройств, связанных графической информацией, например, цифровые фотокамеры, дисплеи и т.п.

Длины волн монохроматических излучений, распределённых по зонам спектра, представлены в Таблице 2.

При работе с таблицами важно учесть непрерывный характер спектра . Именно непрерывный характер спектра приводит к расхождению, как ширины спектра видимого излучения, так и положение границ спектральных цветов.

Длины волн монохроматических излучений, распределённых по зонам спектра

Таблица 2

Что касается монохроматических цветов, то разные исследователи выделяют разное их количество! Принято считать от шести до восьми различных цветов спектра.

Шесть цветов спектра

Таблица 3

При выделении семи цветов спектра предлагается из диапазона синего 436-495 нм см.Таблицу 3 выделить две составляющие, одна из которых имеет синий (440-485 нм), другая – голубой (485-500 нм) цвет.

Семь цветов спектра

Таблица 4

Названия семи цветов спектра приведены в Таблице 5.

Названия семи цветов спектра

Таблица 5

При выделении восьми цветов спектра отдельно выделяется Жёлто-зелёный (550-575 нм), уменьшая диапазон зелёного и желтого цветов соответственно.

Восемь цветов спектра

Таблица 6

Для различных целей исследователи могут выделять и другое (существенно большее) число цветов спектра . Однако для практических нужд фотографы, как правило, ограничиваются 6-8 цветами.

Основные и дополнительные цвета

Рис.1. Чёрный и белый, основные и дополнительные цвета

Основные цвета – это три цвета , из которых можно получить любые другие цвета .

Собственно на этом принципе и стоит современная цифровая фотография, использующая в качестве основных цветов красный (R), зелёный (G) и синий (B) см.Таблицу 7.

Дополнительные цвета – это цвета, которые при смешении с основными цветами позволяют получить белый цвет. см.Таблицу 7.

Таблица 7

Основной цвет

Дополнительный цвет

Результирующий цвет

RGB (0 0 225)
Синий/Blue

RGB (255 225 0)
Жёлтый/Yellow

RGB (255 225 225)
Белый/White

RGB (0 225 0)
Зелёный/Green

RGB (255 0 225)
Пурпурный или Фуксия/Magenta

RGB (255 225 225)
Белый/White

RGB (255 0 0)
Красный/Red

RGB (0 225 225)
Голубой/Cyan

RGB (255 225 225)
Белый/White

Световая волна – электромагнитная волна видимого диапазона длин волн. Частота световой волны определяет цвет. Энергия, переносимая световой волной, пропорциональна квадрату ее амплитуды.

Световые волны охватывают на шкале электромагнитных волн огромный диапазон, лежащий за ультракороткими миллиметровыми радиоволнами и простирающийся до наиболее коротких гамма-лучей – электромагнитных волн с длиной волны ʎ меньшей, чем 0,1 нм (1 нм = 10 -9 м)

Всякая волна распространяется из одной точки в другую не мгновенно, а с определенной скоростью.

Скорость распространения световых и вообще электромагнитных волн в вакууме (а практически и в воздухе) равна приблизительно 300 000 км\с

Вблизи предмета его тень имеет резкие края, однако очертания
тени размываются с увеличением расстояния между предметом
и тенью. Это нетрудно понять, если учесть, что свет распростра-
няется прямолинейно, а каждый источник света имеет конечные
размеры. Изучение распространения световых лучей показывает,
что на краю каждой тени существует частично освещенная об-
ласть. Эта так называемая полутень делает очертания тени раз-
мытыми. Наиболее темная часть тени (глубокая тень) полностью
отгорожена от источника света. Ширина полутени тем меньше,
чем ближе тень к объекту, который ее отбрасывает, поэтому
вблизи предмета тень выглядит более резкой.

Было установлено, что световая волна представляет собой колебания электрического и магнитного полей, распространяющиеся в пространстве; оба поля совершают колебания во взаимно перпендикулярных плоскостях, которые перпендикулярны также и направлению распространения волны. В действительности световые волны являются одним из типов электромагнитных волн, включающих также рентгеновское, ультрафиолетовое, инфракрасное излучения и радиоволны. Световые волны испускаются атомами, когда электроны в них переходят с одной орбиты на другую. Если атом получает энергию, например в форме тепла, света или электрической энергии, электроны удаляются от ядра на орбиты с большей энергией. Затем они вновь переходят на более близкие к ядру орбиты с меньшей энергией, излучая при этом энергию в виде электромагнитных волн. Так возникает свет.

Форма волны -  наглядное представление формы сигнала, такого как волна, распространяющегося в физической среде, или его абстрактное представление.

Во многих случаях среда, в которой распространяется волна, не позволяет наблюдать её форму визуально. В этом случае, термин «сигнал» относится к форме графика величины, изменяющейся по времени или зависящей от расстояния. Для наглядного представления формы волны может использоваться инструмент, называемый «осциллограф», отображающий на экране значение измеряемой величины и его изменение. В более широком смысле термин «сигнал» используется для обозначения формы графика значений любой величины, изменяющейся по времени.

Общими периодическими сигналами являются (t -  время):

· Синусоида: sin (2 π t ). Амплитуда сигнала соответствует тригонометрической функции синуса (sin), изменяющейся по времени.

· Меандр: saw(t ) − saw (t − duty). Этот сигнал как правило используется для представления и передачи цифровых данных. Прямоугольные импульсы с постоянным периодом содержат нечётные гармоники, которые попадают на −6дБ/октаву.

· Треугольная волна: (t − 2 floor ((t + 1) /2)) (−1) floor ((t + 1) /2) . Включает в себя нечётные гармоники, которые попадают на −12дБ/октаву.

· Пилообразная волна: 2 (t − floor(t )) − 1. Выглядит как зубья пилы. Используется в качестве отправной точки cубтрактивного синтеза, так как пилообразная волна с постоянным периодом содержит чётные и нечётные гармоники, которые попадают на −6 дБ/октаву.

Другие формы сигналов часто называют композитными, так как в большинстве случаев они могут быть описаны как сочетание нескольких синусоидальных волн или суммой других базисных функций.

Ряд Фурье описывает разложение периодического сигнала на основе фундаментального принципа, гласящего, что любой периодический сигнал может быть представлен в виде суммы (возможно бесконечной) фундаментальных и гармонических составляющих. Энергетически-конечные непериодические сигналы могут быть проанализированы как синусоиды после преобразования Фурье.

Длина волны (λ) - кратчайшее расстояние между точками волны, колеблющимися в одинаковых фазах. Свет мы воспринимаем глазами. Он является электромагнитной волной с длиной волны (в вакууме) от 760 нм (красный) до 420 нм (фиолетовый). - длина волны. Частота световых колебаний от 4 . 10 14 Гц (фиолетовый) до 7 . 10 14 Гц (красный). Это достаточно узкая полоска на шкале электромагнитных волн. Частота световой волны (длина волны в вакууме) определяет цвет видимого нами света: Синусоида символически показывает частоту (длину волны) соответствующего участка спектра (цвета). Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице: λ - длина световой волны м
с - скорость света м/c
T - период ЭМ колебаний с
ν - частота колебаний световой волны Гц

Колеба́ния - повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Например, при колебаниях маятника повторяются отклонения его в ту и другую сторону от вертикального положения; при колебаниях в электрическом колебательном контуре повторяются величина и направление тока, текущего через катушку.

Электромагнитными колебаниями называются периодические изменения напряженности Е и индукции В.

Электромагнитными колебаниями являются радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи, гамма-лучи.

Передача колебаний обусловлена тем, что смежные участки среды связаны между собой. Эта связь может осуществляться различно. Она может быть обусловлена, в частности, силами упругости , возникающими вследствие деформации среды при ее колебаниях. В результате колебание, вызванное каким-либо образом в одном месте, влечет за собой последовательное возникновение колебаний в других местах, все более и более удаленных от первоначального, и возникает так называемая волна.

Электромагнитные волны – эти волны представляют собой передачу из одних мест пространства в другие колебаний электрического и магнитного полей, создаваемых электрическими зарядами и токами. Всякое изменение электрического поля вызывает появление магнитного поля, и обратно, всякое изменение магнитного поля создаёт электрическое поле. Твердая, жидкая или газообразная среда может сильно влиять на распространение электромагнитных волн, но наличие такой среды для этих волн не необходимо. Электромагнитные волны могут распространяться всюду, где может существовать электромагнитное поле, а значит, и в вакууме, т.е. в пространстве, не содержащем атомов.

Всякая волна распространяется из одной точки в другую не мгновенно, а с определенной скоростью.

Электромагнитные колебания - взаимосвязанные колебания электрического и магнитного полей.

Электромагнитные колебания появляются в различных электрических цепях. При этом колеблются величина заряда, напряжение, сила тока, напряженность электрического поля, индукция магнитного поля и другие электродинамические величины.

Свободные электромагнитные колебания возникают в электромагнитной системе после выведения ее из состояния равновесия, например, сообщением конденсатору заряда или изменением тока в участке цепи.

Это затухающие колебания, так как сообщенная системе энергия расходуется на нагревание и другие процессы.

Вынужденные электромагнитные колебания - незатухающие колебания в цепи, вызванные внешней периодически изменяющейся синусоидальной ЭДС.

Электромагнитные колебания описываются теми же законами, что и механические, хотя физическая природа этих колебаний совершенно различна.

Электрические колебания - частный случай электромагнитных, когда рассматривают колебания только электрических величин. В этом случае говорят о переменных токе, напряжении, мощности и т.д.

КОЛЕБАТЕЛЬНЫЙ КОНТУР

Колебательный контур - электрическая цепь, состоящая из последовательно соединенных конденсатора емкостью C, катушки индуктивностью L и резистора сопротивлением R.

Состояние устойчивого равновесия колебательного контура характеризуется минимальной энергией электрического поля (конденсатор не заряжен) и магнитного поля (ток через катушку отсутствует).

Величины, выражающие свойства самой системы (параметры системы): L и m, 1/C и k

величины, характеризующие состояние системы:

величины, выражающие скорость изменения состояния системы: u = x"(t) и i = q"(t) .

Длина волны

Примеры

Приближённо, с ошибкой около 0,07%, рассчитать длину радиоволны можно так: 300 делим на частоту в мегагерцах, получаем длину волны в метрах, например для 80 Гц , длина волны 3750 километра, для 89 МГц - 3,37 метра, для 2,4 ГГц - 12,5 см.

Точная формула для расчёта длины волны электромагнитного излучения в вакууме выглядит так:

где - скорость света , равная в Международной системе единиц (СИ) 299 792 458 м/с точно .

Для определения длины волны электромагнитного излучения в какой-либо среде следует использовать формулу:

где - показатель преломления среды для излучения с данной частотой.

Примечания

Литература


Wikimedia Foundation . 2010 .

Смотреть что такое "Длина волны" в других словарях:

    Расстояние между двумя ближайшими точками гармонической волны, находящимися в одинаковой фазе. Длина волны λ = vT, где Т период колебаний, ? фазовая скорость волны. * * * ДЛИНА ВОЛНЫ ДЛИНА ВОЛНЫ, расстояние между двумя ближайшими точками… … Энциклопедический словарь

    длина волны - (λ) Расстояние, на которое смещается поверхность равной фазы волны за один период колебаний. [ГОСТ 7601 78] длина волны Расстояние, проходимое упругой волной за время, равное одному полному периоду колебаний. }

     
Статьи по теме:
TrueCrypt шифрование важных файлов
TrueCrypt — это программная система для создания и использования шифруемого-на-лету тома (устройства хранения данных). Шифрование-на-лету означает, что данные автоматически шифруются или дешифруются прямо во время их считывания или записи, не отвлекая пол
Какую форму имеет канал гранде
Гранд-канал (Canal Grande) представляет собой основной транспортный канал Венеции, являющийся одновременно и так называемой «главной улицей» этого города на воде. Он пересекает в виде буквы S все пространство города, по его берегам располагаются самые кра
Как заблокировать доступ к вконтакте
Покажу как закрыть доступ ВКонтакте на компьютере. Закрыть доступ вы можете своей подруге или детям, чтобы они не лазили с компьютера вконтакт и не тратили время. Этот способ закроет доступ сайту вконтакте только на компьютере. Заходим в папку etc, она на
Установка Kaspersky Internet Security Параметры и свойства установки программы
Kaspersky Internet Security 2016 - комплексный антивирус, универсальная защита от всех интернет-угроз. Безопасные платежи - защита финансовых операций в интернете. Защита от несанкционированного подключения к веб-камере. Родительский контроль - обеспечен